Suppr超能文献

计步器佩戴和不佩戴时间分类算法的验证。

Validation of accelerometer wear and nonwear time classification algorithm.

机构信息

Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232-2260, USA.

出版信息

Med Sci Sports Exerc. 2011 Feb;43(2):357-64. doi: 10.1249/MSS.0b013e3181ed61a3.

Abstract

INTRODUCTION

the use of movement monitors (accelerometers) for measuring physical activity (PA) in intervention and population-based studies is becoming a standard methodology for the objective measurement of sedentary and active behaviors and for the validation of subjective PA self-reports. A vital step in PA measurement is the classification of daily time into accelerometer wear and nonwear intervals using its recordings (counts) and an accelerometer-specific algorithm.

PURPOSE

the purpose of this study was to validate and improve a commonly used algorithm for classifying accelerometer wear and nonwear time intervals using objective movement data obtained in the whole-room indirect calorimeter.

METHODS

we conducted a validation study of a wear or nonwear automatic algorithm using data obtained from 49 adults and 76 youth wearing accelerometers during a strictly monitored 24-h stay in a room calorimeter. The accelerometer wear and nonwear time classified by the algorithm was compared with actual wearing time. Potential improvements to the algorithm were examined using the minimum classification error as an optimization target.

RESULTS

the recommended elements in the new algorithm are as follows: 1) zero-count threshold during a nonwear time interval, 2) 90-min time window for consecutive zero or nonzero counts, and 3) allowance of 2-min interval of nonzero counts with the upstream or downstream 30-min consecutive zero-count window for detection of artifactual movements. Compared with the true wearing status, improvements to the algorithm decreased nonwear time misclassification during the waking and the 24-h periods (all P values < 0.001).

CONCLUSIONS

the accelerometer wear or nonwear time algorithm improvements may lead to more accurate estimation of time spent in sedentary and active behaviors.

摘要

简介

使用运动监测器(加速度计)测量干预和基于人群的研究中的体力活动(PA),正成为客观测量久坐和活跃行为以及验证主观 PA 自我报告的标准方法。PA 测量的一个重要步骤是使用其记录(计数)和特定于加速度计的算法,将日常时间分类为加速度计佩戴和不佩戴的时间段。

目的

本研究的目的是使用整个房间间接测热仪获得的客观运动数据验证和改进一种常用的加速度计佩戴和不佩戴时间间隔分类算法。

方法

我们对佩戴或不佩戴自动算法进行了验证研究,该算法使用在严格监测的 24 小时房间测热仪中佩戴加速度计的 49 名成年人和 76 名年轻人的数据。使用算法分类的加速度计佩戴和不佩戴时间与实际佩戴时间进行比较。使用最小分类错误作为优化目标检查了算法的潜在改进。

结果

新算法中的推荐要素如下:1)非佩戴时间间隔中的零计数阈值,2)连续零或非零计数的 90 分钟时间窗口,以及 3)允许有 2 分钟的非零计数间隔,上游或下游有 30 分钟连续零计数窗口,用于检测人为运动。与真实佩戴状态相比,算法改进降低了清醒期和 24 小时期间的非佩戴时间误分类(所有 P 值均<0.001)。

结论

加速度计佩戴或不佩戴时间算法的改进可能会导致对久坐和活跃行为所花费时间的更准确估计。

相似文献

1
Validation of accelerometer wear and nonwear time classification algorithm.
Med Sci Sports Exerc. 2011 Feb;43(2):357-64. doi: 10.1249/MSS.0b013e3181ed61a3.
2
Assessment of wear/nonwear time classification algorithms for triaxial accelerometer.
Med Sci Sports Exerc. 2012 Oct;44(10):2009-16. doi: 10.1249/MSS.0b013e318258cb36.
3
Identifying accelerometer nonwear and wear time in older adults.
Int J Behav Nutr Phys Act. 2013 Oct 25;10:120. doi: 10.1186/1479-5868-10-120.
4
Assessing physical activity in persons with rheumatoid arthritis using accelerometry.
Med Sci Sports Exerc. 2010 Aug;42(8):1493-501. doi: 10.1249/MSS.0b013e3181cfc9da.
5
Identifying sedentary time using automated estimates of accelerometer wear time.
Br J Sports Med. 2012 May;46(6):436-42. doi: 10.1136/bjsm.2010.079699. Epub 2011 Apr 18.
6
Ambulatory sleep scoring using accelerometers-distinguishing between nonwear and sleep/wake states.
PeerJ. 2020 Jan 2;8:e8284. doi: 10.7717/peerj.8284. eCollection 2020.
7
Detecting Sleep and Nonwear in 24-h Wrist Accelerometer Data from the National Health and Nutrition Examination Survey.
Med Sci Sports Exerc. 2022 Nov 1;54(11):1936-1946. doi: 10.1249/MSS.0000000000002973. Epub 2022 Jun 23.
10
Separating bedtime rest from activity using waist or wrist-worn accelerometers in youth.
PLoS One. 2014 Apr 11;9(4):e92512. doi: 10.1371/journal.pone.0092512. eCollection 2014.

引用本文的文献

2
Feasibility of combining tDCS with exercise for increasing physical activity in people with depression.
Front Physiol. 2025 Aug 25;16:1597234. doi: 10.3389/fphys.2025.1597234. eCollection 2025.
5
Comparative effectiveness of remote perioperative telemonitoring in cancer surgery: a randomized trial.
NPJ Digit Med. 2025 Aug 28;8(1):555. doi: 10.1038/s41746-025-01961-z.
7
Physical Activity Patterns in Adolescents and Adults with Intellectual and Developmental Disabilities.
Exerc Sport Mov. 2024 Summer;2(3). doi: 10.1249/esm.0000000000000024.
8
Day-to-day sleep efficiency and driving behaviors in older adults with and without cognitive impairment.
Alzheimers Dement (Amst). 2025 Aug 17;17(3):e70173. doi: 10.1002/dad2.70173. eCollection 2025 Jul-Sep.

本文引用的文献

2
Childhood obesity, other cardiovascular risk factors, and premature death.
N Engl J Med. 2010 Feb 11;362(6):485-93. doi: 10.1056/NEJMoa0904130.
3
Validation of the ActiGraph two-regression model for predicting energy expenditure.
Med Sci Sports Exerc. 2010 Sep;42(9):1785-92. doi: 10.1249/MSS.0b013e3181d5a984.
4
Distributed lag and spline modeling for predicting energy expenditure from accelerometry in youth.
J Appl Physiol (1985). 2010 Feb;108(2):314-27. doi: 10.1152/japplphysiol.00374.2009. Epub 2009 Dec 3.
6
A review and meta-analysis of the effect of weight loss on all-cause mortality risk.
Nutr Res Rev. 2009 Jun;22(1):93-108. doi: 10.1017/S0954422409990035.
7
Genes, exercise, growth, and the sedentary, obese child.
J Appl Physiol (1985). 2008 Sep;105(3):988-1001. doi: 10.1152/japplphysiol.00070.2008. Epub 2008 Jun 5.
8
Amount of time spent in sedentary behaviors in the United States, 2003-2004.
Am J Epidemiol. 2008 Apr 1;167(7):875-81. doi: 10.1093/aje/kwm390. Epub 2008 Feb 25.
9
Health-related aspects of objectively measured daily physical activity in children.
Clin Physiol Funct Imaging. 2008 May;28(3):133-44. doi: 10.1111/j.1475-097X.2008.00788.x. Epub 2008 Feb 2.
10
Patterns of habitual activity across weekdays and weekend days in 9-11-year-old children.
Prev Med. 2008 Apr;46(4):317-24. doi: 10.1016/j.ypmed.2007.11.004. Epub 2007 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验