Khoury College of Computer Sciences, Northeastern University, Boston, MA.
Med Sci Sports Exerc. 2022 Nov 1;54(11):1936-1946. doi: 10.1249/MSS.0000000000002973. Epub 2022 Jun 23.
Estimating physical activity, sedentary behavior, and sleep from wrist-worn accelerometer data requires reliable detection of sensor nonwear and sensor wear during both sleep and wake.
This study aimed to develop an algorithm that simultaneously identifies sensor wake-wear, sleep-wear, and nonwear in 24-h wrist accelerometer data collected with or without filtering.
Using sensor data labeled with polysomnography ( n = 21) and directly observed wake-wear data ( n = 31) from healthy adults, and nonwear data from sensors left at various locations in a home ( n = 20), we developed an algorithm to detect nonwear, sleep-wear, and wake-wear for "idle sleep mode" (ISM) filtered data collected in the 2011-2014 National Health and Nutrition Examination Survey. The algorithm was then extended to process original raw data collected from devices without ISM filtering. Both algorithms were further validated using a polysomnography-based sleep and wake-wear data set ( n = 22) and diary-based wake-wear and nonwear labels from healthy adults ( n = 23). Classification performance (F1 scores) was compared with four alternative approaches.
The F1 score of the ISM-based algorithm on the training data set using leave-one-subject-out cross-validation was 0.95 ± 0.13. Validation on the two independent data sets yielded F1 scores of 0.84 ± 0.60 for the data set with sleep-wear and wake-wear and 0.94 ± 0.04 for the data set with wake-wear and nonwear. The F1 score when using original, raw data was 0.96 ± 0.08 for the training data sets and 0.86 ± 0.18 and 0.97 ± 0.04 for the two independent validation data sets. The algorithm performed comparably or better than the alternative approaches on the data sets.
A novel machine-learning algorithm was designed to recognize wake-wear, sleep-wear, and nonwear in 24-h wrist-worn accelerometer data that are applicable for ISM-filtered data or original raw data.
从佩戴在手腕上的加速度计数据中估算身体活动、久坐行为和睡眠需要可靠地检测传感器在睡眠和清醒期间的非佩戴和佩戴情况。
本研究旨在开发一种算法,该算法可以同时识别 24 小时腕部加速度计数据中传感器的清醒佩戴、睡眠佩戴和非佩戴情况,这些数据是在有或没有过滤的情况下收集的。
使用经过多导睡眠图(PSG)标记的传感器数据(n=21)和直接观察到的清醒佩戴数据(n=31),以及在家中不同位置放置的传感器的非佩戴数据(n=20),我们开发了一种算法来检测“空闲睡眠模式”(ISM)过滤后 2011-2014 年全国健康和营养调查中收集的数据的非佩戴、睡眠佩戴和清醒佩戴情况。然后,该算法被扩展到处理没有 ISM 过滤的原始原始数据。使用基于 PSG 的睡眠和清醒佩戴数据集(n=22)和基于日记的清醒佩戴和非佩戴标签(n=23)对这两种算法进行了进一步验证。比较了分类性能(F1 分数)与四种替代方法。
基于 ISM 的算法在使用受试者外留一交叉验证的训练数据集上的 F1 分数为 0.95±0.13。在两个独立数据集上的验证得到的 F1 分数为,佩戴和清醒佩戴数据集为 0.84±0.60,佩戴和非佩戴数据集为 0.94±0.04。使用原始、原始数据时,训练数据集的 F1 分数为 0.96±0.08,两个独立验证数据集的 F1 分数分别为 0.86±0.18 和 0.97±0.04。该算法在数据集上的表现与替代方法相当或更好。
设计了一种新的机器学习算法,用于识别 24 小时佩戴在手腕上的加速度计数据中的清醒佩戴、睡眠佩戴和非佩戴情况,该算法适用于 ISM 过滤后的数据或原始原始数据。