Suppr超能文献

用于太阳能制氢的氢化酶-CdTe 纳米晶杂化体的可控组装。

Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production.

机构信息

Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA.

出版信息

J Am Chem Soc. 2010 Jul 21;132(28):9672-80. doi: 10.1021/ja101031r.

Abstract

We present a study of the self-assembly, charge-transfer kinetics, and catalytic properties of hybrid complexes of CdTe nanocrystals (nc-CdTe) and Clostridium acetobutylicum [FeFe]-hydrogenase I (H(2)ase). Molecular assembly of nc-CdTe and H(2)ase was mediated by electrostatic interactions and resulted in stable, enzymatically active complexes. The assembly kinetics was monitored by nc-CdTe photoluminescence (PL) spectroscopy and exhibited first-order Langmuir adsorption behavior. PL was also used to monitor the transfer of photogenerated electrons from nc-CdTe to H(2)ase. The extent to which the intramolecular electron transfer (ET) contributed to the relaxation of photoexcited nc-CdTe relative to the intrinsic radiative and nonradiative (heat dissipation and surface trapping) recombination pathways was shown by steady-state PL spectroscopy to be a function of the nc-CdTe/H(2)ase molar ratio. When the H(2)ase concentration was lower than the nc-CdTe concentration during assembly, the resulting contribution of ET to PL bleaching was enhanced, which resulted in maximal rates of H(2) photoproduction. Photoproduction of H(2) was also a function of the nc-CdTe PL quantum efficiency (PLQE), with higher-PLQE nanocrystals producing higher levels of H(2), suggesting that photogenerated electrons are transferred to H(2)ase directly from core nanocrystal states rather than from surface-trap states. The duration of H(2) photoproduction was limited by the stability of nc-CdTe under the reactions conditions. A first approach to optimization with ascorbic acid present as a sacrificial donor resulted in photon-to-H(2) efficiencies of 9% under monochromatic light and 1.8% under AM 1.5 white light. In summary, nc-CdTe and H(2)ase spontaneously assemble into complexes that upon illumination transfer photogenerated electrons from core nc-CdTe states to H(2)ase, with low H(2)ase coverages promoting optimal orientations for intramolecular ET and solar H(2) production.

摘要

我们研究了 CdTe 纳米晶体(nc-CdTe)和梭菌属丙酮丁醇梭菌[FeFe]-氢化酶 I(H(2)ase)的混合配合物的自组装、电荷转移动力学和催化性质。nc-CdTe 和 H(2)ase 的分子组装通过静电相互作用介导,并产生稳定的、具有酶活性的配合物。组装动力学通过 nc-CdTe 光致发光(PL)光谱监测,并表现出一级朗缪尔吸附行为。PL 还用于监测从 nc-CdTe 到 H(2)ase 的光生电子转移。通过稳态 PL 光谱表明,光激发 nc-CdTe 相对于分子内电子转移(ET)弛豫的程度是其固有辐射和非辐射(热耗散和表面捕获)复合途径的函数,这取决于 nc-CdTe/H(2)ase 的摩尔比。当组装过程中 H(2)ase 的浓度低于 nc-CdTe 的浓度时,ET 对 PL 漂白的贡献增强,从而导致 H(2)光产生的最大速率。H(2)的光产生也是 nc-CdTe 光致发光量子效率(PLQE)的函数,具有更高 PLQE 的纳米晶体产生更高水平的 H(2),这表明光生电子直接从核纳米晶体状态转移到 H(2)ase,而不是从表面陷阱状态转移。H(2)光产生的持续时间受到反应条件下 nc-CdTe 稳定性的限制。在有抗坏血酸作为牺牲供体的情况下进行的初步优化方法导致在单色光下光子到 H(2)的效率为 9%,在 AM 1.5 白光下为 1.8%。总之,nc-CdTe 和 H(2)ase 自发组装成复合物,在光照下从核 nc-CdTe 状态将光生电子转移到 H(2)ase,低 H(2)ase 覆盖率促进了分子内 ET 和太阳能 H(2)产生的最佳取向。

相似文献

1
Controlled assembly of hydrogenase-CdTe nanocrystal hybrids for solar hydrogen production.
J Am Chem Soc. 2010 Jul 21;132(28):9672-80. doi: 10.1021/ja101031r.
2
Electron transfer kinetics in CdS nanorod-[FeFe]-hydrogenase complexes and implications for photochemical H₂ generation.
J Am Chem Soc. 2014 Mar 19;136(11):4316-24. doi: 10.1021/ja413001p. Epub 2014 Mar 7.
3
Characterization of photochemical processes for H2 production by CdS nanorod-[FeFe] hydrogenase complexes.
J Am Chem Soc. 2012 Mar 28;134(12):5627-36. doi: 10.1021/ja2116348. Epub 2012 Mar 15.
4
Wiring an [FeFe]-hydrogenase with photosystem I for light-induced hydrogen production.
Biochemistry. 2010 Dec 7;49(48):10264-6. doi: 10.1021/bi1016167. Epub 2010 Nov 11.
5
Competition between electron transfer, trapping, and recombination in CdS nanorod-hydrogenase complexes.
Phys Chem Chem Phys. 2015 Feb 28;17(8):5538-42. doi: 10.1039/c4cp05993j.
6
Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies.
J Am Chem Soc. 2012 Jul 11;134(27):11108-11. doi: 10.1021/ja3042367. Epub 2012 Jun 26.
8
Activation Thermodynamics and H/D Kinetic Isotope Effect of the H to HH Transition in [FeFe] Hydrogenase.
J Am Chem Soc. 2017 Sep 20;139(37):12879-12882. doi: 10.1021/jacs.7b04216. Epub 2017 Sep 6.
9
Diameter dependent electron transfer kinetics in semiconductor-enzyme complexes.
ACS Nano. 2014 Oct 28;8(10):10790-8. doi: 10.1021/nn504561v. Epub 2014 Oct 1.

引用本文的文献

1
Spatially resolved charge-transfer kinetics at the quantum dot-microbe interface using fluorescence lifetime imaging microscopy.
Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2407987122. doi: 10.1073/pnas.2407987122. Epub 2025 Mar 17.
2
Performance evaluation and multidisciplinary analysis of catalytic fixation reactions by material-microbe hybrids.
Nat Catal. 2024 May;7(5):475-482. doi: 10.1038/s41929-024-01151-2. Epub 2024 Apr 26.
3
Structure of a biohybrid photosystem I-platinum nanoparticle solar fuel catalyst.
Nat Commun. 2024 Nov 4;15(1):9519. doi: 10.1038/s41467-024-53476-y.
6
Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis.
Chem Sci. 2024 May 21;15(26):9893-9914. doi: 10.1039/d4sc00864b. eCollection 2024 Jul 3.
7
Electrostatic [FeFe]-hydrogenase-carbon nitride assemblies for efficient solar hydrogen production.
Chem Sci. 2024 Mar 13;15(16):6088-6094. doi: 10.1039/d4sc00640b. eCollection 2024 Apr 24.
8
Charge Transfer from Quantum-Confined 0D, 1D, and 2D Nanocrystals.
Chem Rev. 2024 May 8;124(9):5695-5763. doi: 10.1021/acs.chemrev.3c00742. Epub 2024 Apr 17.
9
Efficient photon upconversion enabled by strong coupling between silicon quantum dots and anthracene.
Nat Chem. 2023 Aug;15(8):1172-1178. doi: 10.1038/s41557-023-01225-x. Epub 2023 Jun 12.
10
Maximizing light-driven CO and N fixation efficiency in quantum dot-bacteria hybrids.
Nat Catal. 2022 Nov;5(11):1019-1029. doi: 10.1038/s41929-022-00867-3. Epub 2022 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验