Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA.
J Am Chem Soc. 2010 Jul 21;132(28):9672-80. doi: 10.1021/ja101031r.
We present a study of the self-assembly, charge-transfer kinetics, and catalytic properties of hybrid complexes of CdTe nanocrystals (nc-CdTe) and Clostridium acetobutylicum [FeFe]-hydrogenase I (H(2)ase). Molecular assembly of nc-CdTe and H(2)ase was mediated by electrostatic interactions and resulted in stable, enzymatically active complexes. The assembly kinetics was monitored by nc-CdTe photoluminescence (PL) spectroscopy and exhibited first-order Langmuir adsorption behavior. PL was also used to monitor the transfer of photogenerated electrons from nc-CdTe to H(2)ase. The extent to which the intramolecular electron transfer (ET) contributed to the relaxation of photoexcited nc-CdTe relative to the intrinsic radiative and nonradiative (heat dissipation and surface trapping) recombination pathways was shown by steady-state PL spectroscopy to be a function of the nc-CdTe/H(2)ase molar ratio. When the H(2)ase concentration was lower than the nc-CdTe concentration during assembly, the resulting contribution of ET to PL bleaching was enhanced, which resulted in maximal rates of H(2) photoproduction. Photoproduction of H(2) was also a function of the nc-CdTe PL quantum efficiency (PLQE), with higher-PLQE nanocrystals producing higher levels of H(2), suggesting that photogenerated electrons are transferred to H(2)ase directly from core nanocrystal states rather than from surface-trap states. The duration of H(2) photoproduction was limited by the stability of nc-CdTe under the reactions conditions. A first approach to optimization with ascorbic acid present as a sacrificial donor resulted in photon-to-H(2) efficiencies of 9% under monochromatic light and 1.8% under AM 1.5 white light. In summary, nc-CdTe and H(2)ase spontaneously assemble into complexes that upon illumination transfer photogenerated electrons from core nc-CdTe states to H(2)ase, with low H(2)ase coverages promoting optimal orientations for intramolecular ET and solar H(2) production.
我们研究了 CdTe 纳米晶体(nc-CdTe)和梭菌属丙酮丁醇梭菌[FeFe]-氢化酶 I(H(2)ase)的混合配合物的自组装、电荷转移动力学和催化性质。nc-CdTe 和 H(2)ase 的分子组装通过静电相互作用介导,并产生稳定的、具有酶活性的配合物。组装动力学通过 nc-CdTe 光致发光(PL)光谱监测,并表现出一级朗缪尔吸附行为。PL 还用于监测从 nc-CdTe 到 H(2)ase 的光生电子转移。通过稳态 PL 光谱表明,光激发 nc-CdTe 相对于分子内电子转移(ET)弛豫的程度是其固有辐射和非辐射(热耗散和表面捕获)复合途径的函数,这取决于 nc-CdTe/H(2)ase 的摩尔比。当组装过程中 H(2)ase 的浓度低于 nc-CdTe 的浓度时,ET 对 PL 漂白的贡献增强,从而导致 H(2)光产生的最大速率。H(2)的光产生也是 nc-CdTe 光致发光量子效率(PLQE)的函数,具有更高 PLQE 的纳米晶体产生更高水平的 H(2),这表明光生电子直接从核纳米晶体状态转移到 H(2)ase,而不是从表面陷阱状态转移。H(2)光产生的持续时间受到反应条件下 nc-CdTe 稳定性的限制。在有抗坏血酸作为牺牲供体的情况下进行的初步优化方法导致在单色光下光子到 H(2)的效率为 9%,在 AM 1.5 白光下为 1.8%。总之,nc-CdTe 和 H(2)ase 自发组装成复合物,在光照下从核 nc-CdTe 状态将光生电子转移到 H(2)ase,低 H(2)ase 覆盖率促进了分子内 ET 和太阳能 H(2)产生的最佳取向。