Suppr超能文献

使用荧光寿命成像显微镜研究量子点-微生物界面的空间分辨电荷转移动力学。

Spatially resolved charge-transfer kinetics at the quantum dot-microbe interface using fluorescence lifetime imaging microscopy.

作者信息

Suri Mokshin, Salimi Jazi Farshid, Crowley Jack C, Park Youngchan, Fu Bing, Chen Peng, Zipfel Warren R, Barstow Buz, Hanrath Tobias

机构信息

Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853.

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853.

出版信息

Proc Natl Acad Sci U S A. 2025 Mar 25;122(12):e2407987122. doi: 10.1073/pnas.2407987122. Epub 2025 Mar 17.

Abstract

Integrating the optoelectronic properties of quantum dots (QDs) with biological enzymatic systems to form microbe-semiconductor biohybrids offers promising prospects for both solar-to-chemical conversion and light-modulated biochemical processes. Developing these nano-bio hybrid systems necessitates a deep understanding of charge-transfer dynamics at the nano-bio interface. Photoexcited carrier transfer from QDs to microbes is driven by complex interactions, with emerging insights into the relevant thermodynamic and kinetic factors. The heterogeneities of both microbes and QD ensembles pose significant challenges in mechanistic understanding, which is critical for designing advanced nano-bio hybrids. We used fluorescence lifetime imaging microscopy to analyze charge transfer between a CdSe QD film and microbes. We correlated the spatiotemporal fluorescence data with an analytical model. Our analysis revealed two distinct distributions of QD de-excitation pathways. The characteristics of these distributions: 1) a faster transfer rate ([Formula: see text]), with a lower acceptor number ([Formula: see text]) and 2) a slower transfer rate ([Formula: see text]) with a higher acceptor number ([Formula: see text]). We assign these distributions to the indirect and direct electron transfer mechanisms, respectively. Our findings demonstrate how spectroscopic imaging can uncover fundamental electron transfer mechanisms at complex interfaces, offering valuable design principles for future nano-bio hybrids.

摘要

将量子点(QD)的光电特性与生物酶系统整合,形成微生物-半导体生物杂交体,这为太阳能到化学能的转化以及光调制生化过程都提供了广阔的前景。开发这些纳米-生物杂交系统需要深入了解纳米-生物界面处的电荷转移动力学。从量子点到微生物的光激发载流子转移是由复杂的相互作用驱动的,对相关的热力学和动力学因素也有了新的认识。微生物和量子点集合体的异质性给机理理解带来了重大挑战,而这对于设计先进的纳米-生物杂交体至关重要。我们使用荧光寿命成像显微镜来分析CdSe量子点薄膜与微生物之间的电荷转移。我们将时空荧光数据与一个分析模型相关联。我们的分析揭示了量子点去激发途径的两种不同分布。这些分布的特点:1)转移速率较快([公式:见原文]),受体数量较少([公式:见原文]);2)转移速率较慢([公式:见原文]),受体数量较多([公式:见原文])。我们分别将这些分布归因于间接和直接电子转移机制。我们的研究结果表明光谱成像如何能够揭示复杂界面处的基本电子转移机制,为未来的纳米-生物杂交体提供有价值的设计原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3cd/11962476/e90f27b90e70/pnas.2407987122fig02.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验