Department of Chemistry and Biochemistry, University of Colorado Boulder , Boulder, Colorado 80309, United States.
J Am Chem Soc. 2014 Mar 19;136(11):4316-24. doi: 10.1021/ja413001p. Epub 2014 Mar 7.
This Article describes the electron transfer (ET) kinetics in complexes of CdS nanorods (CdS NRs) and [FeFe]-hydrogenase I from Clostridium acetobutylicum (CaI). In the presence of an electron donor, these complexes produce H2 photochemically with quantum yields of up to 20%. Kinetics of ET from CdS NRs to CaI play a critical role in the overall photochemical reactivity, as the quantum efficiency of ET defines the upper limit on the quantum yield of H2 generation. We investigated the competitiveness of ET with the electron relaxation pathways in CdS NRs by directly measuring the rate and quantum efficiency of ET from photoexcited CdS NRs to CaI using transient absorption spectroscopy. This technique is uniquely suited to decouple CdS→CaI ET from the processes occurring in the enzyme during H2 production. We found that the ET rate constant (k(ET)) and the electron relaxation rate constant in CdS NRs (k(CdS)) were comparable, with values of 10(7) s(-1), resulting in a quantum efficiency of ET of 42% for complexes with the average CaI:CdS NR molar ratio of 1:1. Given the direct competition between the two processes that occur with similar rates, we propose that gains in efficiencies of H2 production could be achieved by increasing k(ET) and/or decreasing k(CdS) through structural modifications of the nanocrystals. When catalytically inactive forms of CaI were used in CdS-CaI complexes, ET behavior was akin to that observed with active CaI, demonstrating that electron injection occurs at a distal iron-sulfur cluster and is followed by transport through a series of accessory iron-sulfur clusters to the active site of CaI. Using insights from this time-resolved spectroscopic study, we discuss the intricate kinetic pathways involved in photochemical H2 generation in CdS-CaI complexes, and we examine how the relationship between the electron injection rate and the other kinetic processes relates to the overall H2 production efficiency.
本文描述了 CdS 纳米棒(CdS NRs)和来自丙酮丁醇梭菌(CaI)的 [FeFe]-氢化酶 I 复合物中的电子转移(ET)动力学。在电子供体存在的情况下,这些复合物可以通过光化学产生 H2,量子产率高达 20%。从 CdS NRs 到 CaI 的 ET 动力学在整体光化学反应性中起着关键作用,因为 ET 的量子效率定义了 H2 生成量子产率的上限。我们通过使用瞬态吸收光谱直接测量光激发的 CdS NRs 到 CaI 的 ET 速率和量子效率,研究了 ET 与 CdS NRs 中电子弛豫途径的竞争。这种技术非常适合将 CdS→CaI ET 与酶在 H2 产生过程中发生的过程分离。我们发现,ET 速率常数(k(ET))和 CdS NRs 中的电子弛豫速率常数(k(CdS))相当,值为 10(7) s(-1),导致平均 CaI:CdS NR 摩尔比为 1:1 的复合物的 ET 量子效率为 42%。鉴于这两个以相似速率发生的过程之间存在直接竞争,我们提出可以通过结构修饰纳米晶体来提高 k(ET) 和/或降低 k(CdS),从而提高 H2 产生效率。当在 CdS-CaI 复合物中使用无催化活性的 CaI 形式时,ET 行为类似于观察到的具有活性 CaI 的行为,这表明电子注入发生在远端铁硫簇上,并随后通过一系列辅助铁硫簇传输到 CaI 的活性位点。利用这项时间分辨光谱研究的见解,我们讨论了 CdS-CaI 复合物中光化学 H2 产生涉及的复杂动力学途径,并研究了电子注入速率与其他动力学过程之间的关系如何与整体 H2 产生效率相关。