Suppr超能文献

最大化量子点-细菌杂交体中光驱动的一氧化碳和氮固定效率。

Maximizing light-driven CO and N fixation efficiency in quantum dot-bacteria hybrids.

作者信息

Guan Xun, Erşan Sevcan, Hu Xiangchen, Atallah Timothy L, Xie Yongchao, Lu Shengtao, Cao Bocheng, Sun Jingwen, Wu Ke, Huang Yu, Duan Xiangfeng, Caram Justin R, Yu Yi, Park Junyoung O, Liu Chong

机构信息

Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States.

Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States.

出版信息

Nat Catal. 2022 Nov;5(11):1019-1029. doi: 10.1038/s41929-022-00867-3. Epub 2022 Nov 10.

Abstract

Integrating light-harvesting materials with microbial biochemistry is a viable approach to produce chemicals with high efficiency from the air, water, and sunlight. Yet it remains unclear whether all absorbed photons in the materials can be transferred through the material-biology interface for solar-to-chemical production and whether the presence of materials beneficially affect the microbial metabolism. Here we report a microbe-semiconductor hybrid by interfacing CO/N-fixing bacterium with CdTe quantum dots for light-driven CO and N fixation with internal quantum efficiencies of 47.2 ± 7.3% and 7.1 ± 1.1%, respectively, reaching the biochemical limits of 46.1% and 6.9% imposed by the stoichiometry in biochemical pathways. Photophysical studies suggest fast charge-transfer kinetics at the microbe-semiconductor interfaces, while proteomics and metabolomics indicate a material-induced regulation of microbial metabolism favoring higher quantum efficiencies compared to the biological counterparts alone.

摘要

将光捕获材料与微生物生物化学相结合是一种从空气、水和阳光中高效生产化学品的可行方法。然而,目前尚不清楚材料中所有吸收的光子是否都能通过材料-生物界面转移用于太阳能到化学能的转化,以及材料的存在是否对微生物代谢有有益影响。在此,我们报道了一种微生物-半导体杂化体系,通过将固碳/固氮细菌与碲化镉量子点相结合,实现光驱动的固碳和固氮,其内部量子效率分别为47.2±7.3%和7.1±1.1%,达到了生化途径化学计量学所规定的46.1%和6.9%的生化极限。光物理研究表明,微生物-半导体界面处的电荷转移动力学很快,而蛋白质组学和代谢组学表明,与单独的生物体系相比,材料诱导的微生物代谢调控有利于提高量子效率。

相似文献

5
Material-Microbe Interfaces for Solar-Driven CO Bioelectrosynthesis.用于太阳能驱动 CO2 生物电合成的材料-微生物界面
Trends Biotechnol. 2020 Nov;38(11):1245-1261. doi: 10.1016/j.tibtech.2020.03.008. Epub 2020 Apr 15.

引用本文的文献

9
Bringing carbon to life via one-carbon metabolism.通过一碳代谢赋予碳生命。
Trends Biotechnol. 2025 Mar;43(3):572-585. doi: 10.1016/j.tibtech.2024.08.014. Epub 2024 Sep 20.
10
Synergistic material-microbe interface toward deeper anaerobic defluorination.协同的物质-微生物界面实现更深度的厌氧除氟。
Proc Natl Acad Sci U S A. 2024 Jul 30;121(31):e2400525121. doi: 10.1073/pnas.2400525121. Epub 2024 Jul 23.

本文引用的文献

2
Thermodynamic Constraints on Electromicrobial Protein Production.电微生物蛋白质生产的热力学限制
Front Bioeng Biotechnol. 2022 Feb 21;10:820384. doi: 10.3389/fbioe.2022.820384. eCollection 2022.
5
Cysteine: an overlooked energy and carbon source.半胱氨酸:被忽视的能量和碳源。
Sci Rep. 2021 Jan 25;11(1):2139. doi: 10.1038/s41598-021-81103-z.
6
Semi-biological approaches to solar-to-chemical conversion.半生物法太阳能-化学转化。
Chem Soc Rev. 2020 Jul 21;49(14):4926-4952. doi: 10.1039/c9cs00496c. Epub 2020 Jun 15.
7
Electricity-powered artificial root nodule.电动人工根瘤。
Nat Commun. 2020 Mar 20;11(1):1505. doi: 10.1038/s41467-020-15314-9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验