Suppr超能文献

根际细菌激发子3-羟基丁酮可诱导拟南芥产生系统抗性。

The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana.

作者信息

Rudrappa Thimmaraju, Biedrzycki Meredith L, Kunjeti Sridhara G, Donofrio Nicole M, Czymmek Kirk J, Paré Paul W, Bais Harsh P

出版信息

Commun Integr Biol. 2010 Mar;3(2):130-8. doi: 10.4161/cib.3.2.10584.

Abstract

The majority of plant growth promoting rhizobacteria (PGPR) confer plant immunity against a wide range of foliar diseases by activating plant defences that reduce a plant's susceptibility to pathogen attack. Here we show that Arabidopsis thaliana (Col-0) plants exposed to Bacillus subtilis strain FB17 (hereafter FB17), results in reduced disease severity against Pseudomonas syringae pv. tomato DC3000 (hereafter DC3000) compared to plants without FB17 treatment. Exogenous application of the B. subtilis derived elicitor, acetoin (3-hydroxy-2-butanone), was found to trigger induced systemic resistance (ISR) and protect plants against DC3000 pathogenesis. Moreover, B. subtilis acetoin biosynthetic mutants that emitted reduced levels of acetoin conferred reduced protection to A. thaliana against pathogen infection. Further analysis using FB17 and defense-compromised mutants of A. thaliana indicated that resistance to DC3000 occurs via NPR1 and requires salicylic acid (SA)/ethylene (ET) whereas jasmonic acid (JA) is not essential. This study provides new insight into the role of rhizo-bacterial volatile components as elicitors of defense responses in plants.

摘要

大多数植物促生根际细菌(PGPR)通过激活植物防御机制来增强植物对多种叶部病害的免疫力,从而降低植物对病原体攻击的易感性。在此我们表明,与未用枯草芽孢杆菌菌株FB17(以下简称FB17)处理的植物相比,暴露于FB17的拟南芥(Col-0)植株对丁香假单胞菌番茄致病变种(以下简称DC3000)的病害严重程度降低。发现外源施用枯草芽孢杆菌衍生的激发子乙偶姻(3-羟基-2-丁酮)可触发诱导系统抗性(ISR)并保护植物免受DC3000致病作用的影响。此外,乙偶姻生物合成水平降低的枯草芽孢杆菌突变体对拟南芥抵御病原体感染的保护作用减弱。使用FB17和拟南芥防御缺陷突变体进行的进一步分析表明,对DC3000的抗性通过NPR1产生,需要水杨酸(SA)/乙烯(ET),而茉莉酸(JA)并非必需。本研究为根际细菌挥发性成分作为植物防御反应激发子的作用提供了新的见解。

相似文献

1
The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana.
Commun Integr Biol. 2010 Mar;3(2):130-8. doi: 10.4161/cib.3.2.10584.
2
Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis.
Plant Physiol. 2012 Nov;160(3):1642-61. doi: 10.1104/pp.112.200386. Epub 2012 Sep 12.
7
and Trigger Common and Distinct Systemic Immune Responses in Depending on the Pathogen Lifestyle.
Vaccines (Basel). 2020 Sep 4;8(3):503. doi: 10.3390/vaccines8030503.
8
OSUB18 triggers induced systemic resistance against bacterial and fungal pathogens in Arabidopsis.
Front Plant Sci. 2023 Jan 23;14:1078100. doi: 10.3389/fpls.2023.1078100. eCollection 2023.
10
Systemic resistance induced by volatile organic compounds emitted by plant growth-promoting fungi in Arabidopsis thaliana.
PLoS One. 2014 Jan 27;9(1):e86882. doi: 10.1371/journal.pone.0086882. eCollection 2014.

引用本文的文献

1
Biological Control and Growth-Promoting Activities of Burkholderia vietnamiensis FBCC-B8049 Isolated from Freshwater.
Plant Pathol J. 2025 Aug;41(4):484-497. doi: 10.5423/PPJ.OA.03.2025.0041. Epub 2025 Aug 1.
2
Effects of abiotic and biotic elicitors on tomato resistance to tomato brown rugose fruit virus.
Sci Rep. 2025 Jul 26;15(1):27216. doi: 10.1038/s41598-025-13578-z.
3
The dual nature of plant growth-promoting bacteria: Benefits, risks, and pathways to sustainable deployment.
Curr Res Microb Sci. 2025 Jun 16;9:100421. doi: 10.1016/j.crmicr.2025.100421. eCollection 2025.
4
Foot traffic on turf primarily shaped the endophytic bacteriome of the soil-rhizosphere-root continuum.
Front Microbiol. 2025 Apr 9;16:1488371. doi: 10.3389/fmicb.2025.1488371. eCollection 2025.
6
The Utilization of to Design Environmentally Friendly Living Paints with Anti-Mold Properties.
Microorganisms. 2024 Jun 18;12(6):1226. doi: 10.3390/microorganisms12061226.
8
Maize pollen carry bacteria that suppress a fungal pathogen that enters through the male gamete fertilization route.
Front Plant Sci. 2024 Jan 10;14:1286199. doi: 10.3389/fpls.2023.1286199. eCollection 2023.
10
Quorum sensing activities and genomic insights of plant growth-promoting rhizobacteria isolated from Assam tea.
World J Microbiol Biotechnol. 2023 Apr 17;39(6):160. doi: 10.1007/s11274-023-03608-1.

本文引用的文献

1
Plant resistance towards insect herbivores: a dynamic interaction.
New Phytol. 2002 Nov;156(2):145-169. doi: 10.1046/j.1469-8137.2002.00519.x.
2
Plant Growth-Promoting Rhizobacterial Mediated Protection in Tomato Against Tomato mottle virus.
Plant Dis. 2000 Jul;84(7):779-784. doi: 10.1094/PDIS.2000.84.7.779.
3
Plant-growth-promoting rhizobacteria.
Annu Rev Microbiol. 2009;63:541-56. doi: 10.1146/annurev.micro.62.081307.162918.
4
Multiple Disease Protection by Rhizobacteria that Induce Systemic Resistance-Historical Precedence.
Phytopathology. 1997 Feb;87(2):136-7. doi: 10.1094/PHYTO.1997.87.2.136.
5
Bacillus sp. L324-92 for Biological Control of Three Root Diseases of Wheat Grown with Reduced Tillage.
Phytopathology. 1997 May;87(5):551-8. doi: 10.1094/PHYTO.1997.87.5.551.
6
Induced Systemic Resistance and Promotion of Plant Growth by Bacillus spp.
Phytopathology. 2004 Nov;94(11):1259-66. doi: 10.1094/PHYTO.2004.94.11.1259.
7
Rhizobacteria-Mediated Growth Promotion of Tomato Leads to Protection Against Cucumber mosaic virus.
Phytopathology. 2003 Oct;93(10):1301-7. doi: 10.1094/PHYTO.2003.93.10.1301.
8
Root-secreted malic acid recruits beneficial soil bacteria.
Plant Physiol. 2008 Nov;148(3):1547-56. doi: 10.1104/pp.108.127613. Epub 2008 Sep 26.
9
A high-throughput chemical screen for resistance to Pseudomonas syringae in Arabidopsis.
Plant J. 2008 May;54(3):522-31. doi: 10.1111/j.1365-313X.2008.03425.x. Epub 2008 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验