Department of Neurology and Center for Translational Systems Biology, Mount Sinai School of Medicine, New York, New York, United States of America.
PLoS Comput Biol. 2010 Jun 24;6(6):e1000828. doi: 10.1371/journal.pcbi.1000828.
Improving the ability to reverse engineer biochemical networks is a major goal of systems biology. Lesions in signaling networks lead to alterations in gene expression, which in principle should allow network reconstruction. However, the information about the activity levels of signaling proteins conveyed in overall gene expression is limited by the complexity of gene expression dynamics and of regulatory network topology. Two observations provide the basis for overcoming this limitation: a. genes induced without de-novo protein synthesis (early genes) show a linear accumulation of product in the first hour after the change in the cell's state; b. The signaling components in the network largely function in the linear range of their stimulus-response curves. Therefore, unlike most genes or most time points, expression profiles of early genes at an early time point provide direct biochemical assays that represent the activity levels of upstream signaling components. Such expression data provide the basis for an efficient algorithm (Plato's Cave algorithm; PLACA) to reverse engineer functional signaling networks. Unlike conventional reverse engineering algorithms that use steady state values, PLACA uses stimulated early gene expression measurements associated with systematic perturbations of signaling components, without measuring the signaling components themselves. Besides the reverse engineered network, PLACA also identifies the genes detecting the functional interaction, thereby facilitating validation of the predicted functional network. Using simulated datasets, the algorithm is shown to be robust to experimental noise. Using experimental data obtained from gonadotropes, PLACA reverse engineered the interaction network of six perturbed signaling components. The network recapitulated many known interactions and identified novel functional interactions that were validated by further experiment. PLACA uses the results of experiments that are feasible for any signaling network to predict the functional topology of the network and to identify novel relationships.
提高反向工程生化网络的能力是系统生物学的主要目标。信号网络中的损伤会导致基因表达的改变,这原则上应该允许网络重建。然而,整体基因表达中关于信号蛋白活性水平的信息受到基因表达动力学和调控网络拓扑复杂性的限制。有两个观察结果为克服这一限制提供了基础:a. 没有从头合成蛋白质(早期基因)的诱导基因在细胞状态发生变化后的第一个小时内表现出产物的线性积累;b. 网络中的信号成分在其刺激-反应曲线的线性范围内大部分功能。因此,与大多数基因或大多数时间点不同,早期基因在早期的表达谱提供了直接的生化测定,代表了上游信号成分的活性水平。这种表达数据为反向工程功能信号网络提供了一种有效的算法(柏拉图洞穴算法;PLACA)的基础。与使用稳态值的传统反向工程算法不同,PLACA 使用与信号成分系统扰动相关的刺激早期基因表达测量值,而不测量信号成分本身。除了反向工程的网络之外,PLACA 还识别检测功能相互作用的基因,从而有助于验证预测的功能网络。使用模拟数据集,该算法对实验噪声具有鲁棒性。使用从促性腺激素细胞获得的实验数据,PLACA 反向工程了六个受扰信号成分的相互作用网络。该网络再现了许多已知的相互作用,并识别出了新的功能相互作用,这些相互作用通过进一步的实验得到了验证。PLACA 使用任何信号网络都可行的实验结果来预测网络的功能拓扑,并识别新的关系。