Suppr超能文献

实验模型:癌细胞的组合药物扰动

Models from experiments: combinatorial drug perturbations of cancer cells.

作者信息

Nelander Sven, Wang Weiqing, Nilsson Björn, She Qing-Bai, Pratilas Christine, Rosen Neal, Gennemark Peter, Sander Chris

机构信息

Computational Biology center, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.

出版信息

Mol Syst Biol. 2008;4:216. doi: 10.1038/msb.2008.53. Epub 2008 Sep 2.

Abstract

We present a novel method for deriving network models from molecular profiles of perturbed cellular systems. The network models aim to predict quantitative outcomes of combinatorial perturbations, such as drug pair treatments or multiple genetic alterations. Mathematically, we represent the system by a set of nodes, representing molecular concentrations or cellular processes, a perturbation vector and an interaction matrix. After perturbation, the system evolves in time according to differential equations with built-in nonlinearity, similar to Hopfield networks, capable of representing epistasis and saturation effects. For a particular set of experiments, we derive the interaction matrix by minimizing a composite error function, aiming at accuracy of prediction and simplicity of network structure. To evaluate the predictive potential of the method, we performed 21 drug pair treatment experiments in a human breast cancer cell line (MCF7) with observation of phospho-proteins and cell cycle markers. The best derived network model rediscovered known interactions and contained interesting predictions. Possible applications include the discovery of regulatory interactions, the design of targeted combination therapies and the engineering of molecular biological networks.

摘要

我们提出了一种从受扰动细胞系统的分子谱中推导网络模型的新方法。这些网络模型旨在预测组合扰动的定量结果,例如药物联合治疗或多种基因改变。在数学上,我们用一组节点来表示系统,这些节点代表分子浓度或细胞过程、一个扰动向量和一个相互作用矩阵。扰动后,系统根据具有内置非线性的微分方程随时间演化,类似于能够表示上位性和饱和效应的霍普菲尔德网络。对于一组特定的实验,我们通过最小化一个复合误差函数来推导相互作用矩阵,目标是预测的准确性和网络结构的简单性。为了评估该方法的预测潜力,我们在人乳腺癌细胞系(MCF7)中进行了21次药物联合治疗实验,并观察了磷酸化蛋白和细胞周期标志物。推导出来的最佳网络模型重新发现了已知的相互作用,并包含了有趣的预测。可能的应用包括发现调控相互作用、设计靶向联合疗法以及构建分子生物学网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/2564730/68c436d4f855/msb200853-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验