Suppr超能文献

细菌趋化性的信号转导与灵敏度和动态范围的关系。

The relation of signal transduction to the sensitivity and dynamic range of bacterial chemotaxis.

机构信息

Department of Mathematical and Life Sciences, Hiroshima University, Hiroshima, Japan.

出版信息

Biophys J. 2012 Sep 19;103(6):1390-9. doi: 10.1016/j.bpj.2012.08.034.

Abstract

Complex networks of interacting molecular components of living cells are responsible for many important processes, such as signal processing and transduction. An important challenge is to understand how the individual properties of these molecular interactions and biochemical transformations determine the system-level properties of biological functions. Here, we address the issue of the accuracy of signal transduction performed by a bacterial chemotaxis system. The chemotaxis sensitivity of bacteria to a chemoattractant gradient has been measured experimentally from bacterial aggregation in a chemoattractant-containing capillary. The observed precision of the chemotaxis depended on environmental conditions such as the concentration and molecular makeup of the chemoattractant. In a quantitative model, we derived the chemotactic response function, which is essential to describing the signal transduction process involved in bacterial chemotaxis. In the presence of a gradient, an analytical solution is derived that reveals connections between the chemotaxis sensitivity and the characteristics of the signaling system, such as reaction rates. These biochemical parameters are integrated into two system-level parameters: one characterizes the efficiency of gradient sensing, and the other is related to the dynamic range of chemotaxis. Thus, our approach explains how a particular signal transduction property affects the system-level performance of bacterial chemotaxis. We further show that the two parameters can be derived from published experimental data from a capillary assay, which successfully characterizes the performance of bacterial chemotaxis.

摘要

活细胞中相互作用的分子成分的复杂网络负责许多重要的过程,如信号处理和转导。一个重要的挑战是要理解这些分子相互作用和生化转化的个体特性如何决定生物功能的系统水平特性。在这里,我们研究了细菌趋化性系统进行信号转导的准确性问题。细菌对趋化梯度的趋化敏感性已经从含有趋化剂的毛细管中细菌聚集的实验中测量出来。观察到的趋化敏感性取决于环境条件,如趋化剂的浓度和分子组成。在定量模型中,我们推导出了趋化响应函数,这对于描述涉及细菌趋化性的信号转导过程至关重要。在梯度存在的情况下,我们推导出了一个解析解,揭示了趋化敏感性与信号系统特征(如反应速率)之间的联系。这些生化参数被整合到两个系统水平参数中:一个参数表征梯度检测的效率,另一个参数与趋化性的动态范围有关。因此,我们的方法解释了特定的信号转导特性如何影响细菌趋化性的系统水平性能。我们进一步表明,这两个参数可以从毛细管测定的已发表实验数据中得出,这成功地描述了细菌趋化性的性能。

相似文献

1
The relation of signal transduction to the sensitivity and dynamic range of bacterial chemotaxis.
Biophys J. 2012 Sep 19;103(6):1390-9. doi: 10.1016/j.bpj.2012.08.034.
2
Chemotaxis: how bacteria use memory.
Biol Chem. 2009 Nov;390(11):1097-104. doi: 10.1515/BC.2009.130.
3
Robustness in simple biochemical networks.
Nature. 1997 Jun 26;387(6636):913-7. doi: 10.1038/43199.
5
Perfect and near-perfect adaptation in a model of bacterial chemotaxis.
Biophys J. 2003 May;84(5):2943-56. doi: 10.1016/S0006-3495(03)70021-6.
6
Dynamic and clustering model of bacterial chemotaxis receptors: structural basis for signaling and high sensitivity.
Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11611-5. doi: 10.1073/pnas.132376499. Epub 2002 Aug 19.
7
Information processing in bacteria: memory, computation, and statistical physics: a key issues review.
Rep Prog Phys. 2016 May;79(5):052601. doi: 10.1088/0034-4885/79/5/052601. Epub 2016 Apr 8.
8
Cell-cell communication enhances bacterial chemotaxis toward external attractants.
Sci Rep. 2017 Oct 9;7(1):12855. doi: 10.1038/s41598-017-13183-9.
9
Systems biology of bacterial chemotaxis.
Curr Opin Microbiol. 2006 Apr;9(2):187-92. doi: 10.1016/j.mib.2006.02.007. Epub 2006 Mar 9.
10
The molecular basis of excitation and adaptation during chemotactic sensory transduction in bacteria.
Contrib Microbiol. 2009;16:33-64. doi: 10.1159/000219372. Epub 2009 Jun 2.

引用本文的文献

1
Smart active particles learn and transcend bacterial foraging strategies.
Proc Natl Acad Sci U S A. 2024 Apr 9;121(15):e2317618121. doi: 10.1073/pnas.2317618121. Epub 2024 Apr 1.
2
Cytoskeleton polarity is essential in determining orientational order in basal bodies of multi-ciliated cells.
PLoS Comput Biol. 2020 Feb 21;16(2):e1007649. doi: 10.1371/journal.pcbi.1007649. eCollection 2020 Feb.
3
The Flux of Euglena gracilis Cells Depends on the Gradient of Light Intensity.
PLoS One. 2016 Dec 29;11(12):e0168114. doi: 10.1371/journal.pone.0168114. eCollection 2016.
4
Experimental and theoretical bases for mechanisms of antigen discrimination by T cells.
Biophysics (Nagoya-shi). 2015 Mar 26;11:85-92. doi: 10.2142/biophysics.11.85. eCollection 2015.

本文引用的文献

1
Fine-tuning of chemotactic response in E. coli determined by high-throughput capillary assay.
Curr Microbiol. 2011 Mar;62(3):764-9. doi: 10.1007/s00284-010-9778-z. Epub 2010 Oct 24.
2
Differences in signalling by directly and indirectly binding ligands in bacterial chemotaxis.
EMBO J. 2010 Oct 20;29(20):3484-95. doi: 10.1038/emboj.2010.224. Epub 2010 Sep 10.
3
Nonadaptive fluctuation in an adaptive sensory system: bacterial chemoreceptor.
PLoS One. 2010 Jun 29;5(6):e11224. doi: 10.1371/journal.pone.0011224.
4
Modeling the chemotactic response of Escherichia coli to time-varying stimuli.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14855-60. doi: 10.1073/pnas.0807569105. Epub 2008 Sep 23.
5
Variable sizes of Escherichia coli chemoreceptor signaling teams.
Mol Syst Biol. 2008;4:211. doi: 10.1038/msb.2008.49. Epub 2008 Aug 5.
6
Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation.
PLoS Comput Biol. 2008 Jan;4(1):e1. doi: 10.1371/journal.pcbi.0040001. Epub 2007 Nov 20.
7
Stochastic signal processing and transduction in chemotactic response of eukaryotic cells.
Biophys J. 2007 Jul 1;93(1):11-20. doi: 10.1529/biophysj.106.100263. Epub 2007 Apr 6.
8
Physical responses of bacterial chemoreceptors.
J Mol Biol. 2007 Mar 9;366(5):1416-23. doi: 10.1016/j.jmb.2006.12.024. Epub 2006 Dec 15.
9
Effects of adaptation in maintaining high sensitivity over a wide range of backgrounds for Escherichia coli chemotaxis.
Biophys J. 2007 Apr 1;92(7):2329-37. doi: 10.1529/biophysj.106.097808. Epub 2007 Jan 5.
10
Precise adaptation in bacterial chemotaxis through "assistance neighborhoods".
Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13040-4. doi: 10.1073/pnas.0603101103. Epub 2006 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验