Piegdon Karoline A, Declair Stefan, Förstner Jens, Meier Torsten, Matthias Heiner, Urbanski Martin, Kitzerow Heinz-S, Reuter Dirk, Wieck Andreas D, Lorke Axel, Meier Cedrik
Physics Department and CeOPP, University of Paderborn, Warburger Strasse 100, 33098 Paderborn, Germany.
Opt Express. 2010 Apr 12;18(8):7946-54. doi: 10.1364/OE.18.007946.
Microdisks made from GaAs with embedded InAs quantum dots are immersed in the liquid crystal 4-cyano-4'-pentylbiphenyl (5CB). The quantum dots serve as emitters feeding the optical modes of the photonic cavity. By changing temperature, the liquid crystal undergoes a phase transition from the isotropic to the nematic state, which can be used as an effective tuning mechanism of the photonic modes of the cavity. In the nematic state, the uniaxial electrical anisotropy of the liquid crystal molecules can be exploited for orienting the material in an electric field, thus externally controlling the birefringence of the material. Using this effect, an electric field induced tuning of the modes is achieved. Numerical simulations using the finite-differences time-domain (FDTD) technique employing an anisotropic dielectric medium allow to understand the alignment of the liquid crystal molecules on the surface of the microdisk resonator.
由嵌入砷化铟量子点的砷化镓制成的微盘被浸入液晶4-氰基-4'-戊基联苯(5CB)中。量子点作为发射器为光子腔的光学模式提供能量。通过改变温度,液晶经历从各向同性到向列相的相变,这可作为腔光子模式的有效调谐机制。在向列相中,液晶分子的单轴电各向异性可用于在电场中使材料取向,从而从外部控制材料的双折射。利用这种效应,实现了电场诱导的模式调谐。使用采用各向异性介电介质的时域有限差分(FDTD)技术进行的数值模拟有助于理解液晶分子在微盘谐振器表面的排列情况。