数学建模:弥合合成生物学中概念与实现之间的差距。

Mathematical modeling: bridging the gap between concept and realization in synthetic biology.

作者信息

Zheng Yuting, Sriram Ganesh

机构信息

Department of Chemical and Biomolecular Engineering, University of Maryland, 1208D, Chemical and Nuclear Engineering Building 090, College Park, MD 20742, USA.

出版信息

J Biomed Biotechnol. 2010;2010:541609. doi: 10.1155/2010/541609. Epub 2010 May 30.

Abstract

Mathematical modeling plays an important and often indispensable role in synthetic biology because it serves as a crucial link between the concept and realization of a biological circuit. We review mathematical modeling concepts and methodologies as relevant to synthetic biology, including assumptions that underlie a model, types of modeling frameworks (deterministic and stochastic), and the importance of parameter estimation and optimization in modeling. Additionally we expound mathematical techniques used to analyze a model such as sensitivity analysis and bifurcation analysis, which enable the identification of the conditions that cause a synthetic circuit to behave in a desired manner. We also discuss the role of modeling in phenotype analysis such as metabolic and transcription network analysis and point out some available modeling standards and software. Following this, we present three case studies-a metabolic oscillator, a synthetic counter, and a bottom--up gene regulatory network--which have incorporated mathematical modeling as a central component of synthetic circuit design.

摘要

数学建模在合成生物学中发挥着重要且往往不可或缺的作用,因为它是生物电路概念与实现之间的关键纽带。我们回顾与合成生物学相关的数学建模概念和方法,包括模型所依据的假设、建模框架的类型(确定性和随机性),以及参数估计和优化在建模中的重要性。此外,我们阐述用于分析模型的数学技术,如敏感性分析和分岔分析,这些技术能够确定使合成电路按预期方式运行的条件。我们还讨论建模在表型分析(如代谢和转录网络分析)中的作用,并指出一些可用的建模标准和软件。在此之后,我们展示三个案例研究——一个代谢振荡器、一个合成计数器和一个自下而上的基因调控网络——它们都将数学建模作为合成电路设计的核心组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d788/2878679/82db4ae663ae/JBB2010-541609.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索