利用模型(重新)设计合成电路。

Using Models to (Re-)Design Synthetic Circuits.

机构信息

Department of Biology, Concordia University, Montreal, QC, Canada.

Center for Applied Synthetic Biology, Concordia University, Montreal, QC, Canada.

出版信息

Methods Mol Biol. 2021;2229:91-118. doi: 10.1007/978-1-0716-1032-9_3.

Abstract

Mathematical models play an important role in the design of synthetic gene circuits, by guiding the choice of biological components and their assembly into novel gene networks. Here, we present a guide for biologists to build and utilize models of gene networks (synthetic or natural) to analyze dynamical properties of these networks while considering the low numbers of molecules inside cells that results in stochastic gene expression. We start by describing how to write down a model and discussing the level of details to include. We then briefly demonstrate how to simulate a network's dynamics using deterministic differential equations that assume high numbers of molecules. To consider the role of stochastic gene expression in single cells, we provide a detailed tutorial on running stochastic Gillespie simulations of a network, including instructions on coding the Gillespie algorithm with example code. Finally, we illustrate how using a combination of quantitative experimental characterization of a synthetic circuit and mathematical modeling can guide the iterative redesign of a synthetic circuit to achieve the desired properties. This is shown using a classic synthetic oscillator, the repressilator, which we recently redesigned into the most precise and robust synthetic oscillator to date. We thus provide a toolkit for synthetic biologists to build more precise and robust synthetic circuits, which should lead to a deeper understanding of the dynamics of gene regulatory networks.

摘要

数学模型在合成基因电路的设计中起着重要作用,通过指导生物元件的选择及其组装成新的基因网络。在这里,我们为生物学家提供了一个指南,用于构建和利用基因网络(合成或自然)的模型,以分析这些网络的动态特性,同时考虑到细胞内分子数量较少导致的随机基因表达。我们首先描述如何写出模型并讨论要包含的详细程度。然后,我们简要演示如何使用假设分子数量较高的确定性微分方程来模拟网络的动态。为了考虑单个细胞中随机基因表达的作用,我们提供了一个关于运行网络的随机 Gillespie 模拟的详细教程,包括使用示例代码对 Gillespie 算法进行编码的说明。最后,我们说明了如何结合对合成电路的定量实验表征和数学建模来指导合成电路的迭代重新设计以实现所需的特性。这是使用经典的合成振荡器(repressilator)来展示的,我们最近将其重新设计成迄今为止最精确和最稳健的合成振荡器。因此,我们为合成生物学家提供了一个工具包,用于构建更精确和稳健的合成电路,这应该有助于深入了解基因调控网络的动态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索