Suppr超能文献

钙结合蛋白免疫反应特征描绘了壁虎的听觉系统。

Calcium-binding protein immunoreactivity characterizes the auditory system of Gekko gecko.

机构信息

Department of Biology, University of Maryland, College Park, Maryland 20742, USA.

出版信息

J Comp Neurol. 2010 Sep 1;518(17):3409-26. doi: 10.1002/cne.22428.

Abstract

Geckos use vocalizations for intraspecific communication, but little is known about the organization of their central auditory system. We therefore used antibodies against the calcium-binding proteins calretinin (CR), parvalbumin (PV), and calbindin-D28k (CB) to characterize the gecko auditory system. We also examined expression of both glutamic acid decarboxlase (GAD) and synaptic vesicle protein (SV2). Western blots showed that these antibodies are specific to gecko brain. All three calcium-binding proteins were expressed in the auditory nerve, and CR immunoreactivity labeled the first-order nuclei and delineated the terminal fields associated with the ascending projections from the first-order auditory nuclei. PV expression characterized the superior olivary nuclei, whereas GAD immunoreactivity characterized many neurons in the nucleus of the lateral lemniscus and some neurons in the torus semicircularis. In the auditory midbrain, the distribution of CR, PV, and CB characterized divisions within the central nucleus of the torus semicircularis. All three calcium-binding proteins were expressed in nucleus medialis of the thalamus. These expression patterns are similar to those described for other vertebrates.

摘要

壁虎通过发声进行种内交流,但对于它们的中枢听觉系统的组织知之甚少。因此,我们使用针对钙结合蛋白 calretinin (CR)、parvalbumin (PV) 和 calbindin-D28k (CB) 的抗体来描述壁虎的听觉系统。我们还检查了谷氨酸脱羧酶 (GAD) 和突触小泡蛋白 (SV2) 的表达。Western blot 显示这些抗体是壁虎大脑特有的。这三种钙结合蛋白都在听神经中表达,CR 免疫反应性标记了一级核,并描绘了与来自一级听觉核的上行投射相关的末端场。PV 表达特征化了上橄榄核,而 GAD 免疫反应性特征化了外侧丘系核中的许多神经元和半规管圆丘中的一些神经元。在听觉中脑,CR、PV 和 CB 的分布特征化了半规管圆丘中心核的分区。丘脑medialis 核中表达了这三种钙结合蛋白。这些表达模式与其他脊椎动物描述的相似。

相似文献

1
Calcium-binding protein immunoreactivity characterizes the auditory system of Gekko gecko.
J Comp Neurol. 2010 Sep 1;518(17):3409-26. doi: 10.1002/cne.22428.
2
Temporary sensory deprivation changes calcium-binding proteins levels in the auditory brainstem.
J Comp Neurol. 1997 Feb 3;378(1):1-15. doi: 10.1002/(sici)1096-9861(19970203)378:1<1::aid-cne1>3.0.co;2-8.
5
Distribution of the calcium-binding proteins parvalbumin and calretinin in the auditory brainstem of adult and developing rats.
J Comp Neurol. 1996 Mar 25;367(1):90-109. doi: 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E.
6
Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala.
Neuroscience. 2001;105(3):681-93. doi: 10.1016/s0306-4522(01)00214-7.
8
Distribution of parvalbumin, calretinin, and calbindin-D(28k) immunoreactivity in the rat amygdaloid complex and colocalization with gamma-aminobutyric acid.
J Comp Neurol. 2000 Oct 23;426(3):441-67. doi: 10.1002/1096-9861(20001023)426:3<441::aid-cne8>3.0.co;2-7.
10
Immunohistochemical characterization of somatostatin containing interneurons in the rat basolateral amygdala.
Brain Res. 2002 Jul 12;943(2):237-44. doi: 10.1016/s0006-8993(02)02650-1.

引用本文的文献

1
Neuroimaging and immunofluorescence of the Pseudopus apodus brain: unraveling its structural complexity.
Brain Struct Funct. 2025 May 28;230(5):76. doi: 10.1007/s00429-025-02940-6.
2
Auditory pathway for detection of vibration in the tokay gecko.
Curr Biol. 2024 Nov 4;34(21):4908-4919.e3. doi: 10.1016/j.cub.2024.09.016. Epub 2024 Oct 4.
3
Anatomy of superior olivary complex and lateral lemniscus in Etruscan shrew.
Sci Rep. 2024 Jun 26;14(1):14734. doi: 10.1038/s41598-024-65451-0.
5
Central projections of auditory nerve fibers in the western rat snake (Pantherophis obsoletus).
J Comp Neurol. 2023 Aug;531(12):1261-1273. doi: 10.1002/cne.25495. Epub 2023 May 28.
6
Molecular identity of the lateral lemniscus nuclei in the adult mouse brain.
Front Neuroanat. 2023 Mar 9;17:1098352. doi: 10.3389/fnana.2023.1098352. eCollection 2023.
7
Beta-Amyloid (Aβ) Increases the Expression of NKCC1 in the Mouse Hippocampus.
Molecules. 2022 Apr 10;27(8):2440. doi: 10.3390/molecules27082440.
8
Strongly directional responses to tones and conspecific calls in the auditory nerve of the Tokay gecko, .
J Neurophysiol. 2021 Mar 1;125(3):887-902. doi: 10.1152/jn.00576.2020. Epub 2021 Feb 3.
9
Inhibitory Neural Circuits in the Mammalian Auditory Midbrain.
J Exp Neurosci. 2018 Dec 12;12:1179069518818230. doi: 10.1177/1179069518818230. eCollection 2018.
10
Evolution of Sound Source Localization Circuits in the Nonmammalian Vertebrate Brainstem.
Brain Behav Evol. 2017;90(2):131-153. doi: 10.1159/000476028. Epub 2017 Oct 9.

本文引用的文献

1
The torus semicircularis in a gekkonid lizard.
J Morphol. 1981 Sep;169(3):259-274. doi: 10.1002/jmor.1051690302.
2
The cytoarchitecture of the torus semicircularis in the golden skink Mabuya multifasciata.
J Morphol. 1984 Jun;180(3):223-242. doi: 10.1002/jmor.1051800306.
5
The molecular evolutionary tree of lizards, snakes, and amphisbaenians.
C R Biol. 2009 Feb-Mar;332(2-3):129-39. doi: 10.1016/j.crvi.2008.07.010. Epub 2008 Nov 28.
7
Acoustical coupling of lizard eardrums.
J Assoc Res Otolaryngol. 2008 Dec;9(4):407-16. doi: 10.1007/s10162-008-0130-2. Epub 2008 Jul 22.
9
Evolution of a sensory novelty: tympanic ears and the associated neural processing.
Brain Res Bull. 2008 Mar 18;75(2-4):365-70. doi: 10.1016/j.brainresbull.2007.10.044. Epub 2007 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验