Suppr超能文献

非哺乳类脊椎动物脑干声源定位回路的进化

Evolution of Sound Source Localization Circuits in the Nonmammalian Vertebrate Brainstem.

作者信息

Walton Peggy L, Christensen-Dalsgaard Jakob, Carr Catherine E

机构信息

University of Maryland, College Park, MD, USA.

出版信息

Brain Behav Evol. 2017;90(2):131-153. doi: 10.1159/000476028. Epub 2017 Oct 9.

Abstract

The earliest vertebrate ears likely subserved a gravistatic function for orientation in the aquatic environment. However, in addition to detecting acceleration created by the animal's own movements, the otolithic end organs that detect linear acceleration would have responded to particle movement created by external sources. The potential to identify and localize these external sources may have been a major selection force in the evolution of the early vertebrate ear and in the processing of sound in the central nervous system. The intrinsic physiological polarization of sensory hair cells on the otolith organs confers sensitivity to the direction of stimulation, including the direction of particle motion at auditory frequencies. In extant fishes, afferents from otolithic end organs encode the axis of particle motion, which is conveyed to the dorsal regions of first-order octaval nuclei. This directional information is further enhanced by bilateral computations in the medulla and the auditory midbrain. We propose that similar direction-sensitive neurons were present in the early aquatic tetrapods and that selection for sound localization in air acted upon preexisting brain stem circuits like those in fishes. With movement onto land, the early tetrapods may have retained some sensitivity to particle motion, transduced by bone conduction, and later acquired new auditory papillae and tympanic hearing. Tympanic hearing arose in parallel within each of the major tetrapod lineages and would have led to increased sensitivity to a broader frequency range and to modification of the preexisting circuitry for sound source localization.

摘要

最早的脊椎动物耳朵可能在水生环境中起到重力静态功能以进行定向。然而,除了检测动物自身运动产生的加速度外,检测线性加速度的耳石终器也会对外部来源产生的颗粒运动做出反应。识别和定位这些外部来源的潜力可能是早期脊椎动物耳朵进化以及中枢神经系统声音处理过程中的主要选择力量。耳石器官上感觉毛细胞的内在生理极化赋予了对刺激方向的敏感性,包括听觉频率下颗粒运动的方向。在现存鱼类中,来自耳石终器的传入神经编码颗粒运动的轴,该轴被传递到一级听神经核的背侧区域。这种方向信息在延髓和听觉中脑中通过双侧计算进一步增强。我们提出,早期水生四足动物中存在类似的方向敏感神经元,并且在空气中声音定位的选择作用于鱼类中存在的预先存在的脑干回路。随着向陆地的迁移,早期四足动物可能保留了对颗粒运动的一些敏感性,通过骨传导进行转换,后来获得了新的听觉乳头和鼓膜听觉。鼓膜听觉在每个主要四足动物谱系中并行出现,并且会导致对更宽频率范围的敏感性增加以及对声源定位的预先存在的电路进行修改。

相似文献

1
Evolution of Sound Source Localization Circuits in the Nonmammalian Vertebrate Brainstem.
Brain Behav Evol. 2017;90(2):131-153. doi: 10.1159/000476028. Epub 2017 Oct 9.
2
Sound localization in the alligator.
Hear Res. 2015 Nov;329:11-20. doi: 10.1016/j.heares.2015.05.009. Epub 2015 Jun 3.
3
Evolutionary trends in directional hearing.
Curr Opin Neurobiol. 2016 Oct;40:111-117. doi: 10.1016/j.conb.2016.07.001. Epub 2016 Jul 22.
4
Evolution of mammalian sound localization circuits: A developmental perspective.
Prog Neurobiol. 2016 Jun;141:1-24. doi: 10.1016/j.pneurobio.2016.02.003. Epub 2016 Mar 28.
5
Evolution of a sensory novelty: tympanic ears and the associated neural processing.
Brain Res Bull. 2008 Mar 18;75(2-4):365-70. doi: 10.1016/j.brainresbull.2007.10.044. Epub 2007 Nov 20.
6
Sound Localization Strategies in Three Predators.
Brain Behav Evol. 2015 Sep;86(1):17-27. doi: 10.1159/000435946. Epub 2015 Sep 24.
7
Processing of acoustic signals in the auditory system of bony fish.
J Acoust Soc Am. 1988 Jan;83(1):338-49. doi: 10.1121/1.396444.
9
Hearing in the African lungfish (Protopterus annectens): pre-adaptation to pressure hearing in tetrapods?
Biol Lett. 2011 Feb 23;7(1):139-41. doi: 10.1098/rsbl.2010.0636. Epub 2010 Sep 8.
10
Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs.
J Neurosci. 2019 May 15;39(20):3882-3896. doi: 10.1523/JNEUROSCI.2989-18.2019. Epub 2019 Mar 18.

引用本文的文献

1
Auditory pathway for detection of vibration in the tokay gecko.
Curr Biol. 2024 Nov 4;34(21):4908-4919.e3. doi: 10.1016/j.cub.2024.09.016. Epub 2024 Oct 4.
2
Fish hearing revealed: Do we understand hearing in critical fishes and marine tetrapods.
J Acoust Soc Am. 2023 Nov 1;154(5):3019-3026. doi: 10.1121/10.0022355.
3
Central projections of auditory nerve fibers in the western rat snake (Pantherophis obsoletus).
J Comp Neurol. 2023 Aug;531(12):1261-1273. doi: 10.1002/cne.25495. Epub 2023 May 28.
4
The evolution of the various structures required for hearing in and tetrapods.
IBRO Neurosci Rep. 2023 Mar 22;14:325-341. doi: 10.1016/j.ibneur.2023.03.007. eCollection 2023 Jun.
5
Hearing without a tympanic ear.
J Exp Biol. 2022 Jun 15;225(12). doi: 10.1242/jeb.244130. Epub 2022 Jun 20.
6
Bone conduction pathways confer directional cues to salamanders.
J Exp Biol. 2021 Oct 15;224(20). doi: 10.1242/jeb.243325. Epub 2021 Oct 26.
7
ZEBrA: Zebra finch Expression Brain Atlas-A resource for comparative molecular neuroanatomy and brain evolution studies.
J Comp Neurol. 2020 Aug;528(12):2099-2131. doi: 10.1002/cne.24879. Epub 2020 Feb 19.
8
Neural Maps of Interaural Time Difference in the American Alligator: A Stable Feature in Modern Archosaurs.
J Neurosci. 2019 May 15;39(20):3882-3896. doi: 10.1523/JNEUROSCI.2989-18.2019. Epub 2019 Mar 18.
9
Conserved and divergent development of brainstem vestibular and auditory nuclei.
Elife. 2018 Dec 19;7:e40232. doi: 10.7554/eLife.40232.

本文引用的文献

1
Coupled ears in lizards and crocodilians.
Biol Cybern. 2016 Oct;110(4-5):291-302. doi: 10.1007/s00422-016-0698-2. Epub 2016 Oct 12.
3
Comparative Auditory Neuroscience: Understanding the Evolution and Function of Ears.
J Assoc Res Otolaryngol. 2017 Feb;18(1):1-24. doi: 10.1007/s10162-016-0579-3. Epub 2016 Aug 18.
4
Evolutionary trends in directional hearing.
Curr Opin Neurobiol. 2016 Oct;40:111-117. doi: 10.1016/j.conb.2016.07.001. Epub 2016 Jul 22.
5
Role of intracranial cavities in avian directional hearing.
Biol Cybern. 2016 Oct;110(4-5):319-331. doi: 10.1007/s00422-016-0688-4. Epub 2016 May 21.
6
Evolution of mammalian sound localization circuits: A developmental perspective.
Prog Neurobiol. 2016 Jun;141:1-24. doi: 10.1016/j.pneurobio.2016.02.003. Epub 2016 Mar 28.
7
Evolution of central pattern generators and rhythmic behaviours.
Philos Trans R Soc Lond B Biol Sci. 2016 Jan 5;371(1685):20150057. doi: 10.1098/rstb.2015.0057.
8
Directional Hearing and Sound Source Localization in Fishes.
Adv Exp Med Biol. 2016;877:121-55. doi: 10.1007/978-3-319-21059-9_7.
9
Sound Localization Strategies in Three Predators.
Brain Behav Evol. 2015 Sep;86(1):17-27. doi: 10.1159/000435946. Epub 2015 Sep 24.
10
Change in the coding of interaural time difference along the tonotopic axis of the chicken nucleus laminaris.
Front Neural Circuits. 2015 Aug 20;9:43. doi: 10.3389/fncir.2015.00043. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验