Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA.
J Theor Biol. 2011 Mar 7;272(1):42-54. doi: 10.1016/j.jtbi.2010.12.001. Epub 2010 Dec 9.
A network of two neurons mutually coupled through inhibitory synapses that display short-term synaptic depression is considered. We show that synaptic depression expands the number of possible activity patterns that the network can display and allows for co-existence of different patterns. Specifically, the network supports different types of n-m anti-phase firing patterns, where one neuron fires n spikes followed by the other neuron firing m spikes. When maximal synaptic conductances are identical, n-n anti-phase firing patterns are obtained and there are conductance intervals over which different pairs of these solutions co-exist. The multitude of n-m anti-phase patterns and their co-existence are not found when the synapses are non-depressing. Geometric singular perturbation methods for dynamical systems are applied to the original eight-dimensional model system to derive a set of one-dimensional conditions for the existence and co-existence of different anti-phase solutions. The generality and validity of these conditions are demonstrated through numerical simulations utilizing the Hodgkin-Huxley and Morris-Lecar neuronal models.
考虑了一个由通过抑制性突触相互耦合的两个神经元组成的网络,这些突触表现出短期突触抑制。我们表明,突触抑制扩大了网络可以显示的可能活动模式的数量,并允许不同模式共存。具体来说,该网络支持不同类型的 n-m 反相点火模式,其中一个神经元发射 n 个尖峰,然后另一个神经元发射 m 个尖峰。当最大突触电导相同时,会得到 n-n 反相点火模式,并且存在不同对这些解共存的电导间隔。当突触不抑制时,不会发现大量的 n-m 反相模式及其共存。应用动力系统的几何奇异摄动方法对原始的八维模型系统进行了推导,得到了一组一维条件,用于存在和共存不同的反相解。通过利用 Hodgkin-Huxley 和 Morris-Lecar 神经元模型的数值模拟验证了这些条件的通用性和有效性。