Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, 609 Charles E. Young Drive, Los Angeles, CA 90095, USA.
Curr Opin Microbiol. 2010 Aug;13(4):459-65. doi: 10.1016/j.mib.2010.05.015. Epub 2010 Jun 28.
Motility of the sleeping sickness parasite, Trypanosoma brucei, impacts disease transmission and pathogenesis. Trypanosome motility is driven by a flagellum that harbors a canonical 9+2 axoneme, together with trypanosome-specific elaborations. Trypanosome flagellum biology and motility have been the object of intense research over the last two years. These studies have led to the discovery of a novel form of motility, termed social motility, and provided revision of long-standing models for cell propulsion. Recent work has also uncovered novel structural features and motor proteins associated with the flagellar apparatus and has identified candidate signaling molecules that are predicted to regulate flagellar motility. Together with earlier inventories of flagellar proteins from proteomic and genomic studies, the stage is now set to move forward with functional studies to elucidate molecular mechanisms and investigate parasite motility in the context of host-parasite interactions.
昏睡病寄生虫(Trypanosoma brucei)的运动能力会影响疾病的传播和发病机制。 鞭毛驱动着锥虫的运动,它包含一个典型的 9+2 轴丝,以及锥虫特有的结构。 过去两年中,锥虫鞭毛生物学和运动能力一直是研究的重点。 这些研究导致了一种新型运动形式——社交运动的发现,并对细胞推进的长期模型进行了修正。 最近的工作还揭示了与鞭毛装置相关的新型结构特征和马达蛋白,并确定了候选信号分子,这些分子预计将调节鞭毛运动。 结合早期从蛋白质组学和基因组学研究中鉴定出的鞭毛蛋白,现在已经准备好进行功能研究,以阐明分子机制,并在宿主-寄生虫相互作用的背景下研究寄生虫的运动能力。