Biology Department, Brandeis University, Waltham, MA 02453, USA.
J Cell Biol. 2009 Dec 14;187(6):921-33. doi: 10.1083/jcb.200908067.
Cilia and flagella are highly conserved microtubule (MT)-based organelles with motile and sensory functions, and ciliary defects have been linked to several human diseases. The 9 + 2 structure of motile axonemes contains nine MT doublets interconnected by nexin links, which surround a central pair of singlet MTs. Motility is generated by the orchestrated activity of thousands of dynein motors, which drive interdoublet sliding. A key regulator of motor activity is the dynein regulatory complex (DRC), but detailed structural information is lacking. Using cryoelectron tomography of wild-type and mutant axonemes from Chlamydomonas reinhardtii, we visualized the DRC in situ at molecular resolution. We present the three-dimensional structure of the DRC, including a model for its subunit organization and intermolecular connections that establish the DRC as a major regulatory node. We further demonstrate that the DRC is the nexin link, which is thought to be critical for the generation of axonemal bending.
纤毛和鞭毛是高度保守的微管(MT)基细胞器,具有运动和感觉功能,纤毛缺陷与几种人类疾病有关。运动轴丝的 9 + 2 结构包含由连接蛋白连接的九个 MT 二联体,它们围绕中央一对单 MT。运动是由数千个动力蛋白马达的协调活动产生的,这些马达驱动双联体滑动。马达活动的一个关键调节剂是动力蛋白调节复合物(DRC),但详细的结构信息仍然缺乏。使用来自莱茵衣藻的野生型和突变轴丝的冷冻电子断层扫描,我们以分子分辨率原位可视化了 DRC。我们展示了 DRC 的三维结构,包括其亚基组织和分子间连接的模型,这些模型将 DRC 确立为一个主要的调节节点。我们进一步证明 DRC 就是连接蛋白,它被认为对轴丝弯曲的产生至关重要。