Suppr超能文献

MIReNA:在基因组范围内和从深度测序数据中以高精度和无需学习的方式发现 microRNAs。

MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data.

机构信息

UPMC Université Paris 06, FRE3214, Génomique Analytique, Paris, France.

出版信息

Bioinformatics. 2010 Sep 15;26(18):2226-34. doi: 10.1093/bioinformatics/btq329. Epub 2010 Jun 30.

Abstract

MOTIVATION

MicroRNAs (miRNAs) are a class of endogenes derived from a precursor (pre-miRNA) and involved in post-transcriptional regulation. Experimental identification of novel miRNAs is difficult because they are often transcribed under specific conditions and cell types. Several computational methods were developed to detect new miRNAs starting from known ones or from deep sequencing data, and to validate their pre-miRNAs.

RESULTS

We present a genome-wide search algorithm, called MIReNA, that looks for miRNA sequences by exploring a multidimensional space defined by only five (physical and combinatorial) parameters characterizing acceptable pre-miRNAs. MIReNA validates pre-miRNAs with high sensitivity and specificity, and detects new miRNAs by homology from known miRNAs or from deep sequencing data. A performance comparison between MIReNA and four available predictive systems has been done. MIReNA approach is strikingly simple but it turns out to be powerful at least as much as more sophisticated algorithmic methods. MIReNA obtains better results than three known algorithms that validate pre-miRNAs. It demonstrates that machine-learning is not a necessary algorithmic approach for pre-miRNAs computational validation. In particular, machine learning algorithms can only confirm pre-miRNAs that look alike known ones, this being a limitation while exploring species with no known pre-miRNAs. The possibility to adapt the search to specific species, possibly characterized by specific properties of their miRNAs and pre-miRNAs, is a major feature of MIReNA. A parameter adjustment calibrates specificity and sensitivity in MIReNA, a key feature for predictive systems, which is not present in machine learning approaches. Comparison of MIReNA with miRDeep using deep sequencing data to predict miRNAs highlights a highly specific predictive power of MIReNA.

AVAILABILITY

At the address http://www.ihes.fr/carbone/data8/.

摘要

动机

MicroRNAs (miRNAs) 是一类内源性基因,来源于前体(pre-miRNA),参与转录后调控。由于它们通常在特定条件和细胞类型下转录,因此新 miRNA 的实验鉴定较为困难。已经开发了几种计算方法,从已知 miRNA 或深度测序数据开始,来检测新的 miRNA,并验证它们的 pre-miRNA。

结果

我们提出了一种称为 MIReNA 的全基因组搜索算法,该算法通过探索仅由五个(物理和组合)参数定义的多维空间来寻找 miRNA 序列,这些参数可用于表征可接受的 pre-miRNA。MIReNA 以高灵敏度和特异性验证 pre-miRNA,并通过同源性从已知 miRNA 或深度测序数据中检测新的 miRNA。已经对 MIReNA 和四个可用预测系统进行了性能比较。MIReNA 方法虽然简单,但至少与更复杂的算法方法一样强大。MIReNA 优于三个已知的验证 pre-miRNA 的算法,得到了更好的结果。这表明机器学习并不是验证 pre-miRNA 的必要算法方法。特别是,机器学习算法只能确认与已知 miRNA 相似的 pre-miRNA,而在探索没有已知 pre-miRNA 的物种时,这是一个限制。能够根据特定物种调整搜索,可能与它们的 miRNA 和 pre-miRNA 的特定特性有关,这是 MIReNA 的一个主要特点。MIReNA 中的参数调整校准了特异性和灵敏度,这是预测系统的关键特征,而在机器学习方法中则不存在。使用深度测序数据将 MIReNA 与 miRDeep 进行比较,以预测 miRNA,突出了 MIReNA 高度特异性的预测能力。

可用性

在地址 http://www.ihes.fr/carbone/data8/。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验