Zhang Yun, Huang Jianghua, Xie Feixiang, Huang Qian, Jiao Hongguan, Cheng Wenbo
College of Information Engineering, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China.
Front Plant Sci. 2024 Mar 19;15:1330854. doi: 10.3389/fpls.2024.1330854. eCollection 2024.
MicroRNAs (miRNAs) are of significance in tuning and buffering gene expression. Despite abundant analysis tools that have been developed in the last two decades, plant miRNA identification from next-generation sequencing (NGS) data remains challenging. Here, we show that we can train a convolutional neural network to accurately identify plant miRNAs from NGS data. Based on our methods, we also present a user-friendly pure Java-based software package called Small RNA-related Intelligent and Convenient Analysis Tools (SRICATs). SRICATs encompasses all the necessary steps for plant miRNA analysis. Our results indicate that SRICATs outperforms currently popular software tools on the test data from five plant species. For non-commercial users, SRICATs is freely available at https://sourceforge.net/projects/sricats.
微小RNA(miRNA)在调节和缓冲基因表达方面具有重要意义。尽管在过去二十年中已经开发了大量分析工具,但从下一代测序(NGS)数据中鉴定植物miRNA仍然具有挑战性。在这里,我们表明我们可以训练卷积神经网络从NGS数据中准确识别植物miRNA。基于我们的方法,我们还展示了一个用户友好的基于纯Java的软件包,称为小RNA相关智能便捷分析工具(SRICATs)。SRICATs涵盖了植物miRNA分析的所有必要步骤。我们的结果表明,在来自五种植物物种的测试数据上,SRICATs优于目前流行的软件工具。对于非商业用户,可从https://sourceforge.net/projects/sricats免费获取SRICATs。