Suppr超能文献

自动化定量活细胞荧光显微镜技术。

Automated quantitative live cell fluorescence microscopy.

机构信息

Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.

出版信息

Cold Spring Harb Perspect Biol. 2010 Aug;2(8):a000455. doi: 10.1101/cshperspect.a000455. Epub 2010 Jun 30.

Abstract

Advances in microscopy automation and image analysis have given biologists the tools to attempt large scale systems-level experiments on biological systems using microscope image readout. Fluorescence microscopy has become a standard tool for assaying gene function in RNAi knockdown screens and protein localization studies in eukaryotic systems. Similar high throughput studies can be attempted in prokaryotes, though the difficulties surrounding work at the diffraction limit pose challenges, and targeting essential genes in a high throughput way can be difficult. Here we will discuss efforts to make live-cell fluorescent microscopy based experiments using genetically encoded fluorescent reporters an automated, high throughput, and quantitative endeavor amenable to systems-level experiments in bacteria. We emphasize a quantitative data reduction approach, using simulation to help develop biologically relevant cell measurements that completely characterize the cell image. We give an example of how this type of data can be directly exploited by statistical learning algorithms to discover functional pathways.

摘要

显微镜自动化和图像分析的进步使生物学家能够利用显微镜图像读数尝试对生物系统进行大规模的系统级实验。荧光显微镜已成为 RNAi 敲低筛选和真核系统中蛋白质定位研究中测定基因功能的标准工具。类似的高通量研究也可以在原核生物中进行,尽管围绕衍射极限的工作所带来的困难带来了挑战,并且以高通量的方式靶向必需基因可能很困难。在这里,我们将讨论使用遗传编码荧光报告基因使基于活细胞荧光显微镜的实验自动化、高通量和定量的努力,这些实验适用于细菌的系统级实验。我们强调了一种定量数据减少方法,使用模拟来帮助开发完全描述细胞图像的生物学相关细胞测量值。我们给出了一个示例,说明这种类型的数据如何可以直接被统计学习算法利用来发现功能途径。

相似文献

1
Automated quantitative live cell fluorescence microscopy.
Cold Spring Harb Perspect Biol. 2010 Aug;2(8):a000455. doi: 10.1101/cshperspect.a000455. Epub 2010 Jun 30.
2
High-throughput RNAi screening by time-lapse imaging of live human cells.
Nat Methods. 2006 May;3(5):385-90. doi: 10.1038/nmeth876.
3
Quantitative fluorescence microscopy and image deconvolution.
Methods Cell Biol. 2013;114:407-26. doi: 10.1016/B978-0-12-407761-4.00017-8.
4
An image score inference system for RNAi genome-wide screening based on fuzzy mixture regression modeling.
J Biomed Inform. 2009 Feb;42(1):32-40. doi: 10.1016/j.jbi.2008.04.007. Epub 2008 Apr 29.
5
Digital autofocus methods for automated microscopy.
Methods Enzymol. 2006;414:620-32. doi: 10.1016/S0076-6879(06)14032-X.
7
A quantitative liposome microarray to systematically characterize protein-lipid interactions.
Nat Methods. 2014 Jan;11(1):47-50. doi: 10.1038/nmeth.2734. Epub 2013 Nov 24.
8
Quantitative time-lapse fluorescence microscopy in single cells.
Annu Rev Cell Dev Biol. 2009;25:301-27. doi: 10.1146/annurev.cellbio.042308.113408.
9
Cell cycle staging of individual cells by fluorescence microscopy.
Nat Protoc. 2015 Feb;10(2):334-48. doi: 10.1038/nprot.2015.016. Epub 2015 Jan 29.
10
Semi-automated 3D fluorescence speckle analyzer (3D-Speckler) for microscope calibration and nanoscale measurement.
J Cell Biol. 2023 Apr 3;222(4). doi: 10.1083/jcb.202202078. Epub 2023 Jan 30.

引用本文的文献

2
Three-dimensional topology-based analysis segments volumetric and spatiotemporal fluorescence microscopy.
Biol Imaging. 2023 Dec 14;4:e1. doi: 10.1017/S2633903X23000260. eCollection 2024.
3
Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria.
Microbiol Mol Biol Rev. 2020 Oct 28;84(4). doi: 10.1128/MMBR.00008-20. Print 2020 Nov 18.
4
Glycoarray Technologies: Deciphering Interactions from Proteins to Live Cell Responses.
Microarrays (Basel). 2016 Jan 4;5(1):3. doi: 10.3390/microarrays5010003.
7
Deconstructing stem cell population heterogeneity: single-cell analysis and modeling approaches.
Biotechnol Adv. 2013 Nov 15;31(7):1047-62. doi: 10.1016/j.biotechadv.2013.09.001. Epub 2013 Sep 11.
8
Analysis of gene expression levels in individual bacterial cells without image segmentation.
Biochem Biophys Res Commun. 2012 May 11;421(3):425-30. doi: 10.1016/j.bbrc.2012.03.117. Epub 2012 Apr 1.
9
Image analysis in fluorescence microscopy: bacterial dynamics as a case study.
Bioessays. 2012 May;34(5):427-36. doi: 10.1002/bies.201100148. Epub 2012 Mar 13.
10
Immunomodulatory mechanisms of lactobacilli.
Microb Cell Fact. 2011 Aug 30;10 Suppl 1(Suppl 1):S17. doi: 10.1186/1475-2859-10-S1-S17.

本文引用的文献

1
High-throughput identification of protein localization dependency networks.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4681-6. doi: 10.1073/pnas.1000846107. Epub 2010 Feb 22.
2
Quantitative genome-scale analysis of protein localization in an asymmetric bacterium.
Proc Natl Acad Sci U S A. 2009 May 12;106(19):7858-63. doi: 10.1073/pnas.0901781106. Epub 2009 Apr 22.
3
Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning.
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1826-31. doi: 10.1073/pnas.0808843106. Epub 2009 Feb 2.
6
ImageJ for microscopy.
Biotechniques. 2007 Jul;43(1 Suppl):25-30. doi: 10.2144/000112517.
7
Comparison of quantitative methods for cell-shape analysis.
J Microsc. 2007 Aug;227(Pt 2):140-56. doi: 10.1111/j.1365-2818.2007.01799.x.
9
A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus.
Mol Microbiol. 2006 Jan;59(2):386-401. doi: 10.1111/j.1365-2958.2005.04970.x.
10
High-dimensional and large-scale phenotyping of yeast mutants.
Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19015-20. doi: 10.1073/pnas.0509436102. Epub 2005 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验