Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
Cold Spring Harb Perspect Biol. 2010 Aug;2(8):a000455. doi: 10.1101/cshperspect.a000455. Epub 2010 Jun 30.
Advances in microscopy automation and image analysis have given biologists the tools to attempt large scale systems-level experiments on biological systems using microscope image readout. Fluorescence microscopy has become a standard tool for assaying gene function in RNAi knockdown screens and protein localization studies in eukaryotic systems. Similar high throughput studies can be attempted in prokaryotes, though the difficulties surrounding work at the diffraction limit pose challenges, and targeting essential genes in a high throughput way can be difficult. Here we will discuss efforts to make live-cell fluorescent microscopy based experiments using genetically encoded fluorescent reporters an automated, high throughput, and quantitative endeavor amenable to systems-level experiments in bacteria. We emphasize a quantitative data reduction approach, using simulation to help develop biologically relevant cell measurements that completely characterize the cell image. We give an example of how this type of data can be directly exploited by statistical learning algorithms to discover functional pathways.
显微镜自动化和图像分析的进步使生物学家能够利用显微镜图像读数尝试对生物系统进行大规模的系统级实验。荧光显微镜已成为 RNAi 敲低筛选和真核系统中蛋白质定位研究中测定基因功能的标准工具。类似的高通量研究也可以在原核生物中进行,尽管围绕衍射极限的工作所带来的困难带来了挑战,并且以高通量的方式靶向必需基因可能很困难。在这里,我们将讨论使用遗传编码荧光报告基因使基于活细胞荧光显微镜的实验自动化、高通量和定量的努力,这些实验适用于细菌的系统级实验。我们强调了一种定量数据减少方法,使用模拟来帮助开发完全描述细胞图像的生物学相关细胞测量值。我们给出了一个示例,说明这种类型的数据如何可以直接被统计学习算法利用来发现功能途径。