Suppr超能文献

解析干细胞群体异质性:单细胞分析和建模方法。

Deconstructing stem cell population heterogeneity: single-cell analysis and modeling approaches.

机构信息

Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.

出版信息

Biotechnol Adv. 2013 Nov 15;31(7):1047-62. doi: 10.1016/j.biotechadv.2013.09.001. Epub 2013 Sep 11.

Abstract

Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives.

摘要

同基因的干细胞群体在多种属性上表现出细胞间的变异性,包括基因或蛋白质表达、表观遗传状态、形态、增殖和分化倾向。观察到的异质性的起源及其在维持多能性和干细胞谱系特化中的作用尚不清楚。要解决相关问题,需要采用单细胞分析方法,因为传统的细胞生化和生物分子分析大多提供群体平均数据。除了延时显微镜和流式细胞术外,还综述了单细胞基因组、转录组和蛋白质组分析的最新进展。多重置换扩增、下一代测序、质谱流式细胞术和光谱法在干细胞系统中的应用有望提供大量信息,在促进多能性或分化的特定条件下,提供细胞群体的前所未有的多参数特征描述。在单细胞分析信息和观察到的表型之间建立联系也需要合适的数学模型。干细胞的自我更新和分化是由亚细胞、细胞间和小生境范围的过程的协调调节来调控的,这些过程跨越多个时间尺度。在这里,我们讨论了将不同的建模方法应用于干细胞群体时出现的挑战。将单细胞分析与计算方法相结合,将填补我们对干细胞生理学中异质性功能的认识空白。这种组合还将有助于合理设计高效的分化和重编程策略以及生物过程,以生产临床上有价值的干细胞衍生物。

相似文献

2
Stem cell modeling: From gene networks to cell populations.干细胞建模:从基因网络到细胞群体
Curr Opin Chem Eng. 2013 Feb 1;2(1):17-25. doi: 10.1016/j.coche.2013.01.001.
10
Nongenetic origins of cell-to-cell variability in B lymphocyte proliferation.B 淋巴细胞增殖中细胞间变异性的非遗传起源。
Proc Natl Acad Sci U S A. 2018 Mar 20;115(12):E2888-E2897. doi: 10.1073/pnas.1715639115. Epub 2018 Mar 7.

引用本文的文献

10
Biologically Relevant Heterogeneity: Metrics and Practical Insights.生物学相关异质性:度量与实践洞察。
SLAS Discov. 2017 Mar;22(3):213-237. doi: 10.1177/2472555216682725. Epub 2017 Jan 6.

本文引用的文献

3
Mass spectrometry-based metabolomics of single yeast cells.基于质谱的单细胞代谢组学研究。
Proc Natl Acad Sci U S A. 2013 May 28;110(22):8790-4. doi: 10.1073/pnas.1209302110. Epub 2013 May 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验