Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.
Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.
J Biol Chem. 2010 Aug 27;285(35):27232-27240. doi: 10.1074/jbc.M110.138842. Epub 2010 Jun 30.
The nitric-oxide synthases (NOS, EC 1.14.13.39) are modular enzymes containing attached flavoprotein and heme (NOSoxy) domains. To generate nitric oxide (NO), the NOS FMN subdomain must interact with the NOSoxy domain to deliver electrons to the heme for O(2) activation during catalysis. The molecular basis and how the interaction is regulated is unclear. We explored the role of eight positively charged residues that create an electropositive patch on NOSoxy in enabling the electron transfer by incorporating mutations that neutralized or reversed their individual charges. Stopped-flow and steady-state experiments revealed that individual charges at Lys(423), Lys(620), and Lys(660) were the most important in enabling heme reduction in nNOS. Charge reversal was more disruptive than neutralization in all cases, and the effects on heme reduction were not due to a weakening in the thermodynamic driving force for heme reduction. Mutant NO synthesis activities displayed a complex pattern that could be simulated by a global model for NOS catalysis. This analysis revealed that the mutations impact the NO synthesis activity only through their effects on heme reduction rates. We conclude that heme reduction and NO synthesis in nNOS is enabled by electrostatic interactions involving Lys(423), Lys(620), and Lys(660), which form a triad of positive charges on the NOSoxy surface. A simulated docking study reveals how electrostatic interactions of this triad can enable an FMN-NOSoxy interaction that is productive for electron transfer.
一氧化氮合酶(NOS,EC 1.14.13.39)是一种包含附着的黄素蛋白和血红素(NOSoxy)结构域的模块化酶。为了产生一氧化氮(NO),NOS 的 FMN 亚结构域必须与 NOSoxy 结构域相互作用,以便在催化过程中向血红素传递电子以激活 O(2)。电子转移的分子基础和调控机制尚不清楚。我们通过整合突变来研究 NOSoxy 上带正电荷的 8 个残基在电子转移中的作用,这些残基创造了一个正电荷补丁。停止流动和稳态实验表明,在 nNOS 中,Lys(423)、Lys(620)和 Lys(660)的单个电荷在使血红素还原方面最为重要。在所有情况下,电荷反转比中和更具破坏性,并且对血红素还原的影响不是由于血红素还原的热力学驱动力减弱所致。突变的 NO 合成活性显示出一种复杂的模式,这种模式可以通过 NOS 催化的全局模型来模拟。该分析表明,突变仅通过其对血红素还原速率的影响来影响 NO 合成活性。我们得出结论,nNOS 中的血红素还原和 NO 合成是由涉及 Lys(423)、Lys(620)和 Lys(660)的静电相互作用所介导的,它们在 NOSoxy 表面形成了一个正电荷三联体。模拟对接研究揭示了这个三联体的静电相互作用如何能够使 FMN-NOSoxy 相互作用有利于电子转移。