Suppr超能文献

淋巴细胞性脉络丛脑膜炎病毒的不同成分诱导和抑制 I 型干扰素反应。

Induction and inhibition of type I interferon responses by distinct components of lymphocytic choriomeningitis virus.

机构信息

Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.

出版信息

J Virol. 2010 Sep;84(18):9452-62. doi: 10.1128/JVI.00155-10. Epub 2010 Jun 30.

Abstract

Type I interferons (IFNs) play a critical role in the host defense against viruses. Lymphocytic choriomeningitis virus (LCMV) infection induces robust type I IFN production in its natural host, the mouse. However, the mechanisms underlying the induction of type I IFNs in response to LCMV infection have not yet been clearly defined. In the present study, we demonstrate that IRF7 is required for both the early phase (day 1 postinfection) and the late phase (day 2 postinfection) of the type I IFN response to LCMV, and melanoma differentiation-associated gene 5 (MDA5)/mitochondrial antiviral signaling protein (MAVS) signaling is crucial for the late phase of the type I IFN response to LCMV. We further demonstrate that LCMV genomic RNA itself (without other LCMV components) is able to induce type I IFN responses in various cell types by activation of the RNA helicases retinoic acid-inducible gene I (RIG-I) and MDA5. We also show that expression of the LCMV nucleoprotein (NP) inhibits the type I IFN response induced by LCMV RNA and other RIG-I/MDA5 ligands. These virus-host interactions may play important roles in the pathogeneses of LCMV and other human arenavirus diseases.

摘要

I 型干扰素(IFNs)在宿主抗病毒防御中发挥着关键作用。淋巴细胞性脉络丛脑膜炎病毒(LCMV)感染在其自然宿主小鼠中诱导强烈的 I 型 IFN 产生。然而,针对 LCMV 感染诱导 I 型 IFN 的机制尚未明确界定。在本研究中,我们证明 IRF7 对于 LCMV 诱导的 I 型 IFN 反应的早期阶段(感染后第 1 天)和晚期阶段(感染后第 2 天)都是必需的,而黑色素瘤分化相关基因 5(MDA5)/线粒体抗病毒信号蛋白(MAVS)信号对于 LCMV 的 I 型 IFN 反应的晚期阶段至关重要。我们进一步证明,LCMV 基因组 RNA 本身(不包含其他 LCMV 成分)通过激活 RNA 解旋酶视黄酸诱导基因 I(RIG-I)和 MDA5,能够在各种细胞类型中诱导 I 型 IFN 反应。我们还表明,LCMV 核蛋白(NP)的表达抑制了由 LCMV RNA 和其他 RIG-I/MDA5 配体诱导的 I 型 IFN 反应。这些病毒-宿主相互作用可能在 LCMV 和其他人类沙粒病毒病的发病机制中发挥重要作用。

相似文献

1
Induction and inhibition of type I interferon responses by distinct components of lymphocytic choriomeningitis virus.
J Virol. 2010 Sep;84(18):9452-62. doi: 10.1128/JVI.00155-10. Epub 2010 Jun 30.
5
Arenavirus nucleoprotein targets interferon regulatory factor-activating kinase IKKε.
J Virol. 2012 Aug;86(15):7728-38. doi: 10.1128/JVI.00187-12. Epub 2012 Apr 24.
6
Role of interferon regulatory factor 7 in T cell responses during acute lymphocytic choriomeningitis virus infection.
J Virol. 2012 Oct;86(20):11254-65. doi: 10.1128/JVI.00576-12. Epub 2012 Aug 8.
9
TRIM13 is a negative regulator of MDA5-mediated type I interferon production.
J Virol. 2014 Sep;88(18):10748-57. doi: 10.1128/JVI.02593-13. Epub 2014 Jul 9.

引用本文的文献

1
NSs: the multifaceted bunyavirus virulence factor.
Npj Viruses. 2025 Sep 3;3(1):65. doi: 10.1038/s44298-025-00146-5.
2
Discovery of a novel lymphocytic choriomeningitis virus strain associated with severe human disease in immunocompetent patient, New Mexico.
Emerg Microbes Infect. 2025 Dec;14(1):2542250. doi: 10.1080/22221751.2025.2542250. Epub 2025 Aug 21.
3
Specific inflammatory stimuli that engage innate immune sensors induce novel CD103 expression profiles in macrophages.
Front Cell Infect Microbiol. 2025 Jun 24;15:1618339. doi: 10.3389/fcimb.2025.1618339. eCollection 2025.
4
Lassa virus protein-protein interactions as mediators of Lassa fever pathogenesis.
Virol J. 2025 Feb 28;22(1):52. doi: 10.1186/s12985-025-02669-y.
6
Immunomodulatory Role of Interferons in Viral and Bacterial Infections.
Int J Mol Sci. 2023 Jun 14;24(12):10115. doi: 10.3390/ijms241210115.
7
A dsRNA-binding mutant reveals only a minor role of exonuclease activity in interferon antagonism by the arenavirus nucleoprotein.
PLoS Pathog. 2023 Jan 5;19(1):e1011049. doi: 10.1371/journal.ppat.1011049. eCollection 2023 Jan.
8
RIG-I-like Receptor Regulation of Immune Cell Function and Therapeutic Implications.
J Immunol. 2022 Sep 1;209(5):845-854. doi: 10.4049/jimmunol.2200395.
9
Friend or foe: RIG- I like receptors and diseases.
Autoimmun Rev. 2022 Oct;21(10):103161. doi: 10.1016/j.autrev.2022.103161. Epub 2022 Aug 1.
10
The Virus-Host Interplay in Junín Mammarenavirus Infection.
Viruses. 2022 May 24;14(6):1134. doi: 10.3390/v14061134.

本文引用的文献

1
RIG-I detects viral genomic RNA during negative-strand RNA virus infection.
Cell. 2010 Feb 5;140(3):397-408. doi: 10.1016/j.cell.2010.01.020.
3
Innate instruction of adaptive immunity revisited: the inflammasome.
EMBO Mol Med. 2009 May;1(2):92-8. doi: 10.1002/emmm.200900014.
4
MDA5 and MAVS mediate type I interferon responses to coxsackie B virus.
J Virol. 2010 Jan;84(1):254-60. doi: 10.1128/JVI.00631-09.
7
RIG-I-like receptors: sensing and responding to RNA virus infection.
Semin Immunol. 2009 Aug;21(4):215-22. doi: 10.1016/j.smim.2009.05.001. Epub 2009 Jun 17.
9
The roles of TLRs, RLRs and NLRs in pathogen recognition.
Int Immunol. 2009 Apr;21(4):317-37. doi: 10.1093/intimm/dxp017. Epub 2009 Feb 26.
10
Innate immunity to virus infection.
Immunol Rev. 2009 Jan;227(1):75-86. doi: 10.1111/j.1600-065X.2008.00737.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验