Suppr超能文献

骨骼成肌细胞的表观遗传调控。

Epigenetic regulation of skeletal myogenesis.

机构信息

Istituto Dulbecco Telethon, IR CCS Santa Lucia Foundation and European Brain Research Institute, Rome, Italy

出版信息

Organogenesis. 2010 Jan-Mar;6(1):48-53. doi: 10.4161/org.6.1.11293.

Abstract

During embryogenesis a timely and coordinated expression of different subsets of genes drives the formation of skeletal muscles in response to developmental cues. In this review, we will summarize the most recent advances on the "epigenetic network" that promotes the transcription of selective groups of genes in muscle progenitors, through the concerted action of chromatin-associated complexes that modify histone tails and microRNAs (miRNAs). These epigenetic players cooperate to establish focal domains of euchromatin, which facilitates gene transcription, and large portions of heterochromatin, which precludes inappropriate gene expression. We also discuss the analogies and differences in the transcriptional and the epigenetic networks driving developmental and adult myogenesis. The elucidation of the epigenetic basis controlling skeletal myogenesis during development and adult life will facilitate experimental strategies toward generating muscle stem cells, either by reprogramming embryonic stem cells or by inducing pluripotency in adult skeletal muscles. During embryogenesis a timely and coordinated expression of different subsets of genes drives the formation of skeletal muscles in response to developmental cues. In this review, we will summarize the most recent advances on the "epigenetic network" that promotes the transcription of selective groups of genes in muscle progenitors, through the concerted action of chromatin-associated complexes that modify histone tails and microRNAs (miRNAs). These epigenetic players cooperate to establish focal domains of euchromatin, which facilitates gene transcription, and large portions of heterochromatin, which precludes inappropriate gene expression. We also discuss the analogies and differences in the transcriptional and the epigenetic networks driving developmental and adult myogenesis. The elucidation of the epigenetic basis controlling skeletal myogenesis during development and adult life will facilitate experimental strategies toward generating muscle stem cells, either by reprogramming embryonic stem cells or by inducing pluripotency in adult skeletal muscles.

摘要

在胚胎发生过程中,不同亚群基因的适时协调表达,响应发育信号,驱动骨骼肌肉的形成。在这篇综述中,我们将总结最近在“表观遗传网络”方面的进展,该网络通过改变组蛋白尾部和 microRNAs(miRNAs)的染色质相关复合物的协同作用,促进肌肉祖细胞中选择性基因簇的转录。这些表观遗传因子合作建立常染色质的焦点区域,促进基因转录,并建立异染色质的大部分区域,防止不合适的基因表达。我们还讨论了驱动发育和成年肌发生的转录和表观遗传网络的相似性和差异。阐明发育和成年生命中控制骨骼肌肉发生的表观遗传基础,将有助于通过重编程胚胎干细胞或诱导成年骨骼肌多能性来生成肌肉干细胞的实验策略。

相似文献

1
Epigenetic regulation of skeletal myogenesis.
Organogenesis. 2010 Jan-Mar;6(1):48-53. doi: 10.4161/org.6.1.11293.
2
Concise Review: Epigenetic Regulation of Myogenesis in Health and Disease.
Stem Cells Transl Med. 2016 Mar;5(3):282-90. doi: 10.5966/sctm.2015-0266. Epub 2016 Jan 21.
3
Epigenetic Regulation of Adult Myogenesis.
Curr Top Dev Biol. 2018;126:235-284. doi: 10.1016/bs.ctdb.2017.08.002. Epub 2017 Sep 28.
4
The epigenetic network regulating muscle development and regeneration.
J Cell Physiol. 2006 Apr;207(1):1-11. doi: 10.1002/jcp.20489.
5
MicroRNAs in skeletal myogenesis.
Cell Cycle. 2011 Feb 1;10(3):441-8. doi: 10.4161/cc.10.3.14710.
7
[Key regulators of skeletal myogenesis].
Mol Biol (Mosk). 2016 Mar-Apr;50(2):195-222. doi: 10.7868/S0026898416010079.
8
Epigenetic regulation of skeletal muscle development and differentiation.
Subcell Biochem. 2013;61:139-50. doi: 10.1007/978-94-007-4525-4_7.
9
microRNAs in skeletal muscle development.
Semin Cell Dev Biol. 2017 Dec;72:67-76. doi: 10.1016/j.semcdb.2017.10.032. Epub 2017 Nov 4.

引用本文的文献

1
An interplay between BRD4 and G9a regulates skeletal myogenesis.
Front Cell Dev Biol. 2022 Sep 7;10:978931. doi: 10.3389/fcell.2022.978931. eCollection 2022.
2
Long noncoding RNA ZFP36L2-AS functions as a metabolic modulator to regulate muscle development.
Cell Death Dis. 2022 Apr 21;13(4):389. doi: 10.1038/s41419-022-04772-2.
4
Histone variants in skeletal myogenesis.
Epigenetics. 2021 Mar;16(3):243-262. doi: 10.1080/15592294.2020.1795606. Epub 2020 Aug 2.
6
Janus effect of glucocorticoids on differentiation of muscle fibro/adipogenic progenitors.
Sci Rep. 2020 Mar 24;10(1):5363. doi: 10.1038/s41598-020-62194-6.
7
Corylifol A from L. Enhances Myogenesis and Alleviates Muscle Atrophy.
Int J Mol Sci. 2020 Feb 25;21(5):1571. doi: 10.3390/ijms21051571.
8
Skeletal muscle: A review of molecular structure and function, in health and disease.
Wiley Interdiscip Rev Syst Biol Med. 2020 Jan;12(1):e1462. doi: 10.1002/wsbm.1462. Epub 2019 Aug 13.
9
Long noncoding RNA Neat1 modulates myogenesis by recruiting Ezh2.
Cell Death Dis. 2019 Jun 26;10(7):505. doi: 10.1038/s41419-019-1742-7.
10
Activation of PASK by mTORC1 is required for the onset of the terminal differentiation program.
Proc Natl Acad Sci U S A. 2019 May 21;116(21):10382-10391. doi: 10.1073/pnas.1804013116. Epub 2019 May 9.

本文引用的文献

2
p38-{gamma}-dependent gene silencing restricts entry into the myogenic differentiation program.
J Cell Biol. 2009 Dec 28;187(7):991-1005. doi: 10.1083/jcb.200907037. Epub 2009 Dec 21.
3
Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells.
Mol Cell. 2009 Oct 9;36(1):61-74. doi: 10.1016/j.molcel.2009.08.008.
4
Skeletal muscle stem cells in developmental versus regenerative myogenesis.
J Intern Med. 2009 Oct;266(4):372-89. doi: 10.1111/j.1365-2796.2009.02158.x.
5
Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13383-7. doi: 10.1073/pnas.0900210106. Epub 2009 Jul 28.
7
Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements.
Nature. 2009 Jul 30;460(7255):627-31. doi: 10.1038/nature08209.
8
Chromatin: the interface between extrinsic cues and the epigenetic regulation of muscle regeneration.
Trends Cell Biol. 2009 Jun;19(6):286-94. doi: 10.1016/j.tcb.2009.03.002. Epub 2009 Apr 23.
10
MicroRNA control of muscle development and disease.
Curr Opin Cell Biol. 2009 Jun;21(3):461-9. doi: 10.1016/j.ceb.2009.01.029. Epub 2009 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验