Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, USA.
Biochemistry. 2010 Aug 10;49(31):6761-70. doi: 10.1021/bi1006404.
Flavin-binding LOV domains are broadly conserved in plants, fungi, archaea, and bacteria. These approximately 100-residue photosensory modules are generally encoded within larger, multidomain proteins that control a range of blue light-dependent physiologies. The bacterium Caulobacter crescentus encodes a soluble LOV-histidine kinase, LovK, that regulates the adhesive properties of the cell. Full-length LovK is dimeric as are a series of systematically truncated LovK constructs containing only the N-terminal LOV sensory domain. Nonconserved sequence flanking the LOV domain functions to tune the signaling lifetime of the protein. Size exclusion chromatography and small-angle X-ray scattering (SAXS) demonstrate that the LOV sensor domain does not undergo a large conformational change in response to photon absorption. However, limited proteolysis identifies a sequence flanking the C-terminus of the LOV domain as a site of light-induced change in protein conformation and dynamics. On the basis of SAXS envelope reconstruction and bioinformatic prediction, we propose this dynamic region of structure is an extended C-terminal coiled coil that links the LOV domain to the histidine kinase domain. To test the hypothesis that LOV domain signaling is affected by cellular redox state in addition to light, we measured the reduction potential of the LovK FMN cofactor. The measured potential of -258 mV is congruent with the redox potential of Gram-negative cytoplasm during logarithmic growth (-260 to -280 mV). Thus, a fraction of LovK in the cytosol may be in the reduced state under typical growth conditions. Chemical reduction of the FMN cofactor of LovK attenuates the light-dependent ATPase activity of the protein in vitro, demonstrating that LovK can function as a conditional photosensor that is regulated by the oxidative state of the cellular environment.
黄素结合 LOV 结构域在植物、真菌、古菌和细菌中广泛保守。这些大约 100 个残基的光感受器模块通常编码在更大的多结构域蛋白内,这些蛋白控制着一系列依赖蓝光的生理功能。新月柄杆菌编码一种可溶性 LOV-组氨酸激酶 LovK,它调节细胞的粘附特性。全长 LovK 是二聚体,一系列系统截短的 LovK 构建体也仅包含 N 端 LOV 感觉结构域。位于 LOV 结构域侧翼的非保守序列可调节蛋白质的信号寿命。凝胶过滤层析和小角 X 射线散射(SAXS)表明, LOV 传感器结构域在吸收光子时不会发生大的构象变化。然而,有限的蛋白水解鉴定出 LOV 结构域的 C 末端侧翼的一个序列是光诱导蛋白质构象和动力学变化的位点。基于 SAXS 包络重建和生物信息学预测,我们提出这个结构的动态区域是一个扩展的 C 端卷曲螺旋,将 LOV 结构域与组氨酸激酶结构域连接起来。为了测试 LOV 结构域信号不仅受光还受细胞氧化还原状态影响的假设,我们测量了 LovK FMN 辅因子的还原电位。测量到的 -258 mV 的电位与对数生长期间革兰氏阴性细胞质的氧化还原电位(-260 至-280 mV)一致。因此,在典型的生长条件下,细胞质中 LovK 的一部分可能处于还原状态。LovK FMN 辅因子的化学还原在体外减弱了该蛋白对光依赖性的 ATP 酶活性,表明 LovK 可以作为一种条件性光敏传感器,受细胞环境氧化还原状态的调节。