Suppr超能文献

在胶体杂化纳米结构中定制光物质自旋相互作用。

Tailoring light-matter-spin interactions in colloidal hetero-nanostructures.

机构信息

Department of Physics and Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA.

出版信息

Nature. 2010 Jul 1;466(7302):91-5. doi: 10.1038/nature09150.

Abstract

The interplay between light and matter is the basis of many fundamental processes and various applications. Harnessing light-matter interactions in principle allows operation of solid state devices under new physical principles: for example, the a.c. optical Stark effect (OSE) has enabled coherent quantum control schemes of spins in semiconductors, with the potential for realizing quantum devices based on spin qubits. However, as the dimension of semiconductors is reduced, light-matter coupling is typically weakened, thus limiting applications at the nanoscale. Recent experiments have demonstrated significant enhancement of nanoscale light-matter interactions, albeit with the need for a high-finesse cavity, ultimately preventing device down-scaling and integration. Here we report that a sizable OSE can be achieved at substantial energy detuning in a cavity-free colloidal metal-semiconductor core-shell hetero-nanostructure, in which the metal surface plasmon is tuned to resonate spectrally with a semiconductor exciton transition. We further demonstrate that this resonantly enhanced OSE exhibits polarization dependence and provides a viable mechanism for coherent ultrafast spin manipulation within colloidal nanostructures. The plasmon-exciton resonant nature further enables tailoring of both OSE and spin manipulation by tuning plasmon resonance intensity and frequency. These results open a pathway for tailoring light-matter-spin interactions through plasmon-exciton resonant coupling in a judiciously engineered nanostructure, and offer a basis for future applications in quantum information processing at the nanoscale. More generally, integrated nanostructures with resonantly enhanced light-matter interactions should serve as a test bed for other emerging fields, including nano-biophotonics and nano-energy.

摘要

光与物质的相互作用是许多基本过程和各种应用的基础。利用光与物质的相互作用,原则上可以在新的物理原理下操作固态器件:例如,交流光斯塔克效应(OSE)已经使半导体中自旋的相干量子控制方案成为可能,具有基于自旋量子位实现量子器件的潜力。然而,随着半导体尺寸的减小,光与物质的耦合通常会减弱,从而限制了纳米尺度的应用。最近的实验已经证明了纳米尺度光与物质相互作用的显著增强,尽管需要高精细度腔,但最终阻止了器件的缩小和集成。在这里,我们报告在无腔胶体金属-半导体核壳异质纳米结构中,可以在相当大的能量失谐处实现可观的 OSE,其中金属表面等离激元被调谐以与半导体激子跃迁光谱共振。我们进一步证明,这种共振增强的 OSE 表现出偏振依赖性,并为胶体纳米结构内相干超快自旋操纵提供了可行的机制。等离子激元-激子共振的性质进一步通过调谐等离子激元共振强度和频率来实现对 OSE 和自旋操纵的调整。这些结果为通过在精心设计的纳米结构中进行等离子激元-激子共振耦合来定制光-物质-自旋相互作用开辟了一条途径,并为未来在纳米尺度进行量子信息处理的应用提供了基础。更一般地说,具有共振增强光物质相互作用的集成纳米结构应该成为其他新兴领域的测试平台,包括纳米生物光子学和纳米能源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验