Yeh Yi-Jui, Chen Shao-Yu, Hsiao Wesley Wei-Wen, Oshima Yoshifumi, Takahashi Mari, Maenosono Shinya, Tung Kuo-Lun, Chiang Wei-Hung
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
Department of Chemical Engineering, National Taiwan University, Taipei 10607, Taiwan.
J Am Chem Soc. 2025 Mar 12;147(10):8227-8239. doi: 10.1021/jacs.4c15029. Epub 2025 Feb 11.
Three-dimensional heterostructures (3DHS) with controlled compositions and tuned properties are highly desired for fundamental studies and applications in optoelectronics, nanocatalysis, clean energy, and biomedicine. However, conventional nanostructure engineering is hindered by challenges such as poor structural control, time- and energy-intensive processes, the use of hazardous and expensive chemicals, and harsh conditions. Here, we report plasma-assisted epitaxy (PAE) engineering of a metal-organic 3DHS with extreme light-matter interaction for rapid single-molecule-level sensing. Plasmonic-active 3DHS composed of structure-tuned gold-silver core-shell nanoparticles (AuAgCSNPs) was precisely engineered using stable and scalable microplasma-enabled nanofabrication under ambient conditions. The engineered AuAgCSNP-based 3DHS possessed exceptional Raman enhancement under suitable laser excitation, leading to single-molecule detection of SARS-CoV-2 spike proteins in simulated human saliva via surface-enhanced Raman scattering (SERS). The developed plasma fabrication method allows the production of centimeter-scale SERS-active metal-organic 3DHS on disposable, flexible, lightweight, and cost-effective substrates, thereby opening a new avenue for next-generation biosensing, nanoelectronics, nanocatalysis, and biomedical applications.
具有可控组成和可调性质的三维异质结构(3DHS)在光电子学、纳米催化、清洁能源和生物医学的基础研究及应用中备受期待。然而,传统的纳米结构工程面临着诸多挑战,如结构控制不佳、耗时耗能的工艺、使用危险且昂贵的化学品以及苛刻的条件。在此,我们报道了一种用于快速单分子水平传感的、具有极强光-物质相互作用的金属有机3DHS的等离子体辅助外延(PAE)工程。由结构可调的金-银核壳纳米颗粒(AuAgCSNPs)组成的等离子体活性3DHS是在环境条件下使用稳定且可扩展的微等离子体辅助纳米制造精确构建的。所构建的基于AuAgCSNP的3DHS在合适的激光激发下具有卓越的拉曼增强效果,从而通过表面增强拉曼散射(SERS)实现了对模拟人唾液中SARS-CoV-2刺突蛋白的单分子检测。所开发的等离子体制造方法能够在一次性、柔性、轻质且经济高效的基底上制备厘米级的SERS活性金属有机3DHS,从而为下一代生物传感、纳米电子学、纳米催化和生物医学应用开辟了一条新途径。