Suppr超能文献

聚(丙交酯-共-乙交酯)-d-a-生育酚聚乙二醇 1000 琥珀酸随机共聚物纳米粒子用于癌症治疗。

Nanoparticles of Poly(Lactide-Co-Glycolide)-d-a-Tocopheryl Polyethylene Glycol 1000 Succinate Random Copolymer for Cancer Treatment.

机构信息

School of Life Sciences, Tsinghua University, 100084, Beijing, People's Republic of China.

出版信息

Nanoscale Res Lett. 2010 May 6;5(7):1161-9. doi: 10.1007/s11671-010-9620-3.

Abstract

Cancer is the leading cause of death worldwide. Nanomaterials and nanotechnologies could provide potential solutions. In this research, a novel biodegradable poly(lactide-co-glycolide)-d-a-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) random copolymer was synthesized from lactide, glycolide and d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) by ring-opening polymerization using stannous octoate as catalyst. The obtained random copolymers were characterized by 1H NMR, FTIR, GPC and TGA. The docetaxel-loaded nanoparticles made of PLGA-TPGS copolymer were prepared by a modified solvent extraction/evaporation method. The nanoparticles were then characterized by various state-of-the-art techniques. The results revealed that the size of PLGA-TPGS nanoparticles was around 250 nm. The docetaxel-loaded PLGA-TPGS nanoparticles could achieve much faster drug release in comparison with PLGA nanoparticles. In vitro cellular uptakes of such nanoparticles were investigated by CLSM, demonstrating the fluorescence PLGA-TPGS nanoparticles could be internalized by human cervix carcinoma cells (HeLa). The results also indicated that PLGA-TPGS-based nanoparticles were biocompatible, and the docetaxel-loaded PLGA-TPGS nanoparticles had significant cytotoxicity against Hela cells. The cytotoxicity against HeLa cells for PLGA-TPGS nanoparticles was in time- and concentration-dependent manner. In conclusion, PLGA-TPGS random copolymer could be acted as a novel and promising biocompatible polymeric matrix material applicable to nanoparticle-based drug delivery system for cancer chemotherapy.

摘要

癌症是全球主要的死亡原因。纳米材料和纳米技术可能提供潜在的解决方案。在这项研究中,通过使用辛酸亚锡作为催化剂的开环聚合,由丙交酯、乙交酯和 d-a-生育酚聚乙二醇 1000 琥珀酸酯(TPGS)合成了一种新型可生物降解的聚(丙交酯-共-乙交酯)-d-a-生育酚聚乙二醇 1000 琥珀酸酯(PLGA-TPGS)无规共聚物。通过 1H NMR、FTIR、GPC 和 TGA 对所得无规共聚物进行了表征。通过改良的溶剂萃取/蒸发法制备了载紫杉醇的 PLGA-TPGS 共聚物纳米粒子。然后通过各种先进的技术对纳米粒子进行了表征。结果表明,PLGA-TPGS 纳米粒子的粒径约为 250nm。与 PLGA 纳米粒子相比,载紫杉醇的 PLGA-TPGS 纳米粒子能够实现更快的药物释放。通过 CLSM 研究了这些纳米粒子的体外细胞摄取,证明了荧光 PLGA-TPGS 纳米粒子可以被人宫颈癌细胞(HeLa)内化。结果还表明,PLGA-TPGS 基纳米粒子具有生物相容性,载紫杉醇的 PLGA-TPGS 纳米粒子对 HeLa 细胞具有显著的细胞毒性。PLGA-TPGS 纳米粒子对 HeLa 细胞的细胞毒性呈时间和浓度依赖性。总之,PLGA-TPGS 无规共聚物可用作新型有前途的生物相容性聚合物基质材料,适用于癌症化疗的基于纳米粒子的药物传递系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e1a/3241251/7d21ad6daa57/1556-276X-5-1161-1.jpg

相似文献

4
Docetaxel-loaded nanoparticles based on star-shaped mannitol-core PLGA-TPGS diblock copolymer for breast cancer therapy.
Acta Biomater. 2013 Nov;9(11):8910-20. doi: 10.1016/j.actbio.2013.06.034. Epub 2013 Jun 28.
8
Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.
Biomaterials. 2009 Jul;30(19):3297-306. doi: 10.1016/j.biomaterials.2009.02.045. Epub 2009 Mar 19.
9
Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy.
J Mater Sci Mater Med. 2015 Apr;26(4):165. doi: 10.1007/s10856-015-5498-z. Epub 2015 Mar 20.

引用本文的文献

1
Cell- and subcellular organelle-targeting nanoparticle-mediated breast cancer therapy.
Front Pharmacol. 2023 Apr 6;14:1180794. doi: 10.3389/fphar.2023.1180794. eCollection 2023.
4
Formulation, Characterization And Evaluation Of Curcumin- Loaded PLGA- TPGS Nanoparticles For Liver Cancer Treatment.
Drug Des Devel Ther. 2019 Oct 16;13:3569-3578. doi: 10.2147/DDDT.S211748. eCollection 2019.
5
Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of Acyclovir.
Saudi Pharm J. 2019 Feb;27(2):293-302. doi: 10.1016/j.jsps.2018.11.011. Epub 2018 Nov 23.
7
Possible role of nanocarriers in drug delivery against cervical cancer.
Nano Rev Exp. 2017 Jul 7;8(1):1335567. doi: 10.1080/20022727.2017.1335567. eCollection 2017.
8
Recent Advances in the Application of Vitamin E TPGS for Drug Delivery.
Theranostics. 2018 Jan 1;8(2):464-485. doi: 10.7150/thno.22711. eCollection 2018.
9
Distribution of PLGA-modified nanoparticles in 3D cell culture models of hypo-vascularized tumor tissue.
J Nanobiotechnology. 2017 Oct 5;15(1):67. doi: 10.1186/s12951-017-0298-x.

本文引用的文献

2
The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity.
Nanomedicine. 2010 Feb;6(1):170-8. doi: 10.1016/j.nano.2009.05.004. Epub 2009 May 15.
3
4
Nanotechnology platforms and physiological challenges for cancer therapeutics.
Nanomedicine. 2007 Jun;3(2):103-10. doi: 10.1016/j.nano.2006.12.002. Epub 2007 Apr 17.
5
The present and future of nanotechnology in human health care.
Nanomedicine. 2007 Mar;3(1):20-31. doi: 10.1016/j.nano.2006.11.008.
6
Modified paclitaxel-loaded nanoparticles for inhibition of hyperplasia in a rabbit arterial balloon injury model.
Pharm Res. 2007 May;24(5):955-62. doi: 10.1007/s11095-006-9214-z. Epub 2007 Mar 20.
7
Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer.
Nanomedicine. 2005 Jun;1(2):101-9. doi: 10.1016/j.nano.2005.03.002.
8
Vitamin E analogs, a novel group of "mitocans," as anticancer agents: the importance of being redox-silent.
Mol Pharmacol. 2007 May;71(5):1185-99. doi: 10.1124/mol.106.030122. Epub 2007 Jan 12.
9
Preparation of DHAQ-loaded mPEG-PLGA-mPEG nanoparticles and evaluation of drug release behaviors in vitro/in vivo.
J Mater Sci Mater Med. 2006 Jun;17(6):509-16. doi: 10.1007/s10856-006-8933-3.
10
Enhanced anticancer efficacy of alpha-tocopheryl succinate by conjugation with polyethylene glycol.
J Control Release. 2005 Sep 20;107(1):43-52. doi: 10.1016/j.jconrel.2005.05.014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验