文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

聚乳酸-羟基乙酸共聚物修饰纳米颗粒在低血管化肿瘤组织三维细胞培养模型中的分布

Distribution of PLGA-modified nanoparticles in 3D cell culture models of hypo-vascularized tumor tissue.

作者信息

Sims Lee B, Huss Maya K, Frieboes Hermann B, Steinbach-Rankins Jill M

机构信息

Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA.

James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.

出版信息

J Nanobiotechnology. 2017 Oct 5;15(1):67. doi: 10.1186/s12951-017-0298-x.


DOI:10.1186/s12951-017-0298-x
PMID:28982361
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5629750/
Abstract

BACKGROUND: Advanced stage cancer treatments are often invasive and painful-typically comprised of surgery, chemotherapy, and/or radiation treatment. Low transport efficiency during systemic chemotherapy may require high chemotherapeutic doses to effectively target cancerous tissue, resulting in systemic toxicity. Nanotherapeutic platforms have been proposed as an alternative to more safely and effectively deliver therapeutic agents directly to tumor sites. However, cellular internalization and tumor penetration are often diametrically opposed, with limited access to tumor regions distal from vasculature, due to irregular tissue morphologies. To address these transport challenges, nanoparticles (NPs) are often surface-modified with ligands to enhance transport and longevity after localized or systemic administration. Here, we evaluate stealth polyethylene-glycol (PEG), cell-penetrating (MPG), and CPP-stealth (MPG/PEG) poly(lactic-co-glycolic-acid) (PLGA) NP co-treatment strategies in 3D cell culture representing hypo-vascularized tissue. RESULTS: Smaller, more regularly-shaped avascular tissue was generated using the hanging drop (HD) method, while more irregularly-shaped masses were formed with the liquid overlay (LO) technique. To compare NP distribution differences within the same type of tissue as a function of different cancer types, we selected HeLa, cervical epithelial adenocarcinoma cells; CaSki, cervical epidermoid carcinoma cells; and SiHa, grade II cervical squamous cell carcinoma cells. In HD tumors, enhanced distribution relative to unmodified NPs was measured for MPG and PEG NPs in HeLa, and for all modified NPs in SiHa spheroids. In LO tumors, the greatest distribution was observed for MPG and MPG/PEG NPs in HeLa, and for PEG and MPG/PEG NPs in SiHa spheroids. CONCLUSIONS: Pre-clinical evaluation of PLGA-modified NP distribution into hypo-vascularized tumor tissue may benefit from considering tissue morphology in addition to cancer type.

摘要

背景:晚期癌症治疗通常具有侵入性且痛苦,通常包括手术、化疗和/或放射治疗。全身化疗期间的低转运效率可能需要高化疗剂量才能有效靶向癌组织,从而导致全身毒性。纳米治疗平台已被提议作为一种替代方案,以更安全有效地将治疗剂直接递送至肿瘤部位。然而,细胞内化和肿瘤穿透往往截然相反,由于组织形态不规则,远离血管的肿瘤区域的 access 受限。为了解决这些转运挑战,纳米颗粒(NPs)通常用配体进行表面修饰,以增强局部或全身给药后的转运和寿命。在此,我们在代表低血管化组织的三维细胞培养中评估隐形聚乙二醇(PEG)、细胞穿透(MPG)和 CPP-隐形(MPG/PEG)聚乳酸-羟基乙酸共聚物(PLGA)NP 联合治疗策略。 结果:使用悬滴(HD)法生成了更小、形状更规则的无血管组织,而通过液体覆盖(LO)技术形成了形状更不规则的团块。为了比较同一类型组织内 NP 分布差异作为不同癌症类型的函数,我们选择了 HeLa(宫颈上皮腺癌细胞)、CaSki(宫颈表皮样癌细胞)和 SiHa(II 级宫颈鳞状细胞癌细胞)。在 HD 肿瘤中,HeLa 中 MPG 和 PEG NPs 以及 SiHa 球体中所有修饰 NPs 的分布相对于未修饰 NPs 有所增强。在 LO 肿瘤中,HeLa 中 MPG 和 MPG/PEG NPs 的分布最大,SiHa 球体中 PEG 和 MPG/PEG NPs 的分布最大。 结论:除癌症类型外,考虑组织形态可能有助于对 PLGA 修饰的 NPs 分布到低血管化肿瘤组织中的临床前评估

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/a954c50d7011/12951_2017_298_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/db4398705d12/12951_2017_298_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/eb02615e3511/12951_2017_298_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/68ea4f95862a/12951_2017_298_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/ebb6818a51bf/12951_2017_298_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/a86b94d32698/12951_2017_298_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/6806ff872a3b/12951_2017_298_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/47049c24c5ee/12951_2017_298_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/a954c50d7011/12951_2017_298_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/db4398705d12/12951_2017_298_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/eb02615e3511/12951_2017_298_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/68ea4f95862a/12951_2017_298_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/ebb6818a51bf/12951_2017_298_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/a86b94d32698/12951_2017_298_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/6806ff872a3b/12951_2017_298_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/47049c24c5ee/12951_2017_298_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2183/5629750/a954c50d7011/12951_2017_298_Fig8_HTML.jpg

相似文献

[1]
Distribution of PLGA-modified nanoparticles in 3D cell culture models of hypo-vascularized tumor tissue.

J Nanobiotechnology. 2017-10-5

[2]
Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer.

J Nanobiotechnology. 2016-4-22

[3]
Efficacy of Surface-Modified PLGA Nanoparticles as a Function of Cervical Cancer Type.

Pharm Res. 2019-3-13

[4]
Non-specific binding and steric hindrance thresholds for penetration of particulate drug carriers within tumor tissue.

J Control Release. 2016-9-28

[5]
Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles.

Pharm Res. 2013-4-23

[6]
Accelerated blood clearance of PEGylated PLGA nanoparticles following repeated injections: effects of polymer dose, PEG coating, and encapsulated anticancer drug.

Pharm Res. 2012-11-27

[7]
Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel.

Biomaterials. 2009-7

[8]
Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.

Eur J Pharm Biopharm. 2018-9-7

[9]
Low-molecular-weight protamine-modified PLGA nanoparticles for overcoming drug-resistant breast cancer.

J Control Release. 2014-7-6

[10]
Enhanced uptake in 2D- and 3D- lung cancer cell models of redox responsive PEGylated nanoparticles with sensitivity to reducing extra- and intracellular environments.

J Control Release. 2018-3-10

引用本文的文献

[1]
Investigating the Effect of Surface Hydrophilicity on the Destiny of PLGA-Poloxamer Nanoparticles in an In Vivo Animal Model.

Int J Mol Sci. 2023-9-25

[2]
Localized chemotherapy approaches and advanced drug delivery strategies: a step forward in the treatment of peritoneal carcinomatosis from ovarian cancer.

Front Oncol. 2023-5-23

[3]
Cancer Spheroids and Organoids as Novel Tools for Research and Therapy: State of the Art and Challenges to Guide Precision Medicine.

Cells. 2023-3-24

[4]
Self-Therapeutic Nanomaterials: Applications in Biology and Medicine.

Mater Today (Kidlington). 2023

[5]
Assessing the interactions between nanoparticles and biological barriers in vitro: a new challenge for microscopy techniques in nanomedicine.

Eur J Histochem. 2022-11-24

[6]
Therapeutic response differences between 2D and 3D tumor models of magnetic hyperthermia.

Nanoscale Adv. 2021-5-5

[7]
In Vitro Models of Biological Barriers for Nanomedical Research.

Int J Mol Sci. 2022-8-10

[8]
Carboplatin-loaded surface modified-PLGA nanoparticles confer sustained inhibitory effect against retinoblastoma cell in vitro.

Arq Bras Oftalmol. 2022

[9]
Multicellular Ovarian Cancer Model for Evaluation of Nanovector Delivery in Ascites and Metastatic Environments.

Pharmaceutics. 2021-11-8

[10]
Influencing factors and strategies of enhancing nanoparticles into tumors .

Acta Pharm Sin B. 2021-8

本文引用的文献

[1]
Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides.

J Control Release. 2017-2-4

[2]
Amine-functionalized poly(lactic-co-glycolic acid) nanoparticles for improved cellular uptake and tumor penetration.

Colloids Surf B Biointerfaces. 2016-12-1

[3]
Generation of Multicellular Breast Cancer Tumor Spheroids: Comparison of Different Protocols.

J Mammary Gland Biol Neoplasia. 2016-12

[4]
Drug Delivery Approaches for the Treatment of Cervical Cancer.

Pharmaceutics. 2016-7-20

[5]
Cholesterol-modified poly(lactide-co-glycolide) nanoparticles for tumor-targeted drug delivery.

Int J Pharm. 2016-7-25

[6]
Enhanced uptake and transport of PLGA-modified nanoparticles in cervical cancer.

J Nanobiotechnology. 2016-4-22

[7]
Evaluation of uptake and distribution of gold nanoparticles in solid tumors.

Eur Phys J Plus. 2015-11-1

[8]
Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity.

Oncotarget. 2016-3-29

[9]
Stability, Pharmacokinetics, Biodistribution and Safety Assessment of Folate-Conjugated Pullulan Acetate Nanoparticles as Cervical Cancer Targeted Drug Carriers.

J Nanosci Nanotechnol. 2015-9

[10]
Folate-decorated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting delivery: optimization and in vivo antitumor activity.

Drug Deliv. 2015-12-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索