Sims Lee B, Huss Maya K, Frieboes Hermann B, Steinbach-Rankins Jill M
Department of Bioengineering, University of Louisville, 505 S. Hancock, CTRB 623, Louisville, KY, 40208, USA.
James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.
J Nanobiotechnology. 2017 Oct 5;15(1):67. doi: 10.1186/s12951-017-0298-x.
BACKGROUND: Advanced stage cancer treatments are often invasive and painful-typically comprised of surgery, chemotherapy, and/or radiation treatment. Low transport efficiency during systemic chemotherapy may require high chemotherapeutic doses to effectively target cancerous tissue, resulting in systemic toxicity. Nanotherapeutic platforms have been proposed as an alternative to more safely and effectively deliver therapeutic agents directly to tumor sites. However, cellular internalization and tumor penetration are often diametrically opposed, with limited access to tumor regions distal from vasculature, due to irregular tissue morphologies. To address these transport challenges, nanoparticles (NPs) are often surface-modified with ligands to enhance transport and longevity after localized or systemic administration. Here, we evaluate stealth polyethylene-glycol (PEG), cell-penetrating (MPG), and CPP-stealth (MPG/PEG) poly(lactic-co-glycolic-acid) (PLGA) NP co-treatment strategies in 3D cell culture representing hypo-vascularized tissue. RESULTS: Smaller, more regularly-shaped avascular tissue was generated using the hanging drop (HD) method, while more irregularly-shaped masses were formed with the liquid overlay (LO) technique. To compare NP distribution differences within the same type of tissue as a function of different cancer types, we selected HeLa, cervical epithelial adenocarcinoma cells; CaSki, cervical epidermoid carcinoma cells; and SiHa, grade II cervical squamous cell carcinoma cells. In HD tumors, enhanced distribution relative to unmodified NPs was measured for MPG and PEG NPs in HeLa, and for all modified NPs in SiHa spheroids. In LO tumors, the greatest distribution was observed for MPG and MPG/PEG NPs in HeLa, and for PEG and MPG/PEG NPs in SiHa spheroids. CONCLUSIONS: Pre-clinical evaluation of PLGA-modified NP distribution into hypo-vascularized tumor tissue may benefit from considering tissue morphology in addition to cancer type.
背景:晚期癌症治疗通常具有侵入性且痛苦,通常包括手术、化疗和/或放射治疗。全身化疗期间的低转运效率可能需要高化疗剂量才能有效靶向癌组织,从而导致全身毒性。纳米治疗平台已被提议作为一种替代方案,以更安全有效地将治疗剂直接递送至肿瘤部位。然而,细胞内化和肿瘤穿透往往截然相反,由于组织形态不规则,远离血管的肿瘤区域的 access 受限。为了解决这些转运挑战,纳米颗粒(NPs)通常用配体进行表面修饰,以增强局部或全身给药后的转运和寿命。在此,我们在代表低血管化组织的三维细胞培养中评估隐形聚乙二醇(PEG)、细胞穿透(MPG)和 CPP-隐形(MPG/PEG)聚乳酸-羟基乙酸共聚物(PLGA)NP 联合治疗策略。 结果:使用悬滴(HD)法生成了更小、形状更规则的无血管组织,而通过液体覆盖(LO)技术形成了形状更不规则的团块。为了比较同一类型组织内 NP 分布差异作为不同癌症类型的函数,我们选择了 HeLa(宫颈上皮腺癌细胞)、CaSki(宫颈表皮样癌细胞)和 SiHa(II 级宫颈鳞状细胞癌细胞)。在 HD 肿瘤中,HeLa 中 MPG 和 PEG NPs 以及 SiHa 球体中所有修饰 NPs 的分布相对于未修饰 NPs 有所增强。在 LO 肿瘤中,HeLa 中 MPG 和 MPG/PEG NPs 的分布最大,SiHa 球体中 PEG 和 MPG/PEG NPs 的分布最大。 结论:除癌症类型外,考虑组织形态可能有助于对 PLGA 修饰的 NPs 分布到低血管化肿瘤组织中的临床前评估
J Nanobiotechnology. 2017-10-5
J Nanobiotechnology. 2016-4-22
Eur J Pharm Biopharm. 2018-9-7
J Control Release. 2014-7-6
Mater Today (Kidlington). 2023
Nanoscale Adv. 2021-5-5
Int J Mol Sci. 2022-8-10
Acta Pharm Sin B. 2021-8
J Control Release. 2017-2-4
Colloids Surf B Biointerfaces. 2016-12-1
J Mammary Gland Biol Neoplasia. 2016-12
Pharmaceutics. 2016-7-20
J Nanobiotechnology. 2016-4-22
Eur Phys J Plus. 2015-11-1