Suppr超能文献

复杂实验中的网络富集分析。

Network enrichment analysis in complex experiments.

作者信息

Shojaie Ali, Michailidis George

机构信息

University of Michigan, Ann Arbor, USA.

出版信息

Stat Appl Genet Mol Biol. 2010;9(1):Article22. doi: 10.2202/1544-6115.1483. Epub 2010 May 22.

Abstract

Cellular functions of living organisms are carried out through complex systems of interacting components. Including such interactions in the analysis, and considering sub-systems defined by biological pathways instead of individual components (e.g. genes), can lead to new findings about complex biological mechanisms. Networks are often used to capture such interactions and can be incorporated in models to improve the efficiency in estimation and inference. In this paper, we propose a model for incorporating external information about interactions among genes (proteins/metabolites) in differential analysis of gene sets. We exploit the framework of mixed linear models and propose a flexible inference procedure for analysis of changes in biological pathways. The proposed method facilitates the analysis of complex experiments, including multiple experimental conditions and temporal correlations among observations. We propose an efficient iterative algorithm for estimation of the model parameters and show that the proposed framework is asymptotically robust to the presence of noise in the network information. The performance of the proposed model is illustrated through the analysis of gene expression data for environmental stress response (ESR) in yeast, as well as simulated data sets.

摘要

生物体的细胞功能是通过相互作用的复杂系统来实现的。在分析中纳入此类相互作用,并考虑由生物途径而非单个组件(如基因)定义的子系统,可能会带来有关复杂生物学机制的新发现。网络常被用于捕捉此类相互作用,并可纳入模型以提高估计和推断的效率。在本文中,我们提出了一个模型,用于在基因集差异分析中纳入有关基因(蛋白质/代谢物)之间相互作用的外部信息。我们利用混合线性模型的框架,提出了一种灵活的推断程序,用于分析生物途径中的变化。所提出的方法有助于对复杂实验进行分析,包括多个实验条件以及观测值之间的时间相关性。我们提出了一种有效的迭代算法来估计模型参数,并表明所提出的框架对于网络信息中噪声的存在具有渐近鲁棒性。通过对酵母环境应激反应(ESR)的基因表达数据以及模拟数据集的分析,展示了所提出模型的性能。

相似文献

1
Network enrichment analysis in complex experiments.
Stat Appl Genet Mol Biol. 2010;9(1):Article22. doi: 10.2202/1544-6115.1483. Epub 2010 May 22.
2
Reverse engineering module networks by PSO-RNN hybrid modeling.
BMC Genomics. 2009 Jul 7;10 Suppl 1(Suppl 1):S15. doi: 10.1186/1471-2164-10-S1-S15.
3
Efficient proximal gradient algorithm for inference of differential gene networks.
BMC Bioinformatics. 2019 May 2;20(1):224. doi: 10.1186/s12859-019-2749-x.
4
A prior-based integrative framework for functional transcriptional regulatory network inference.
Nucleic Acids Res. 2017 Feb 28;45(4):e21. doi: 10.1093/nar/gkw963.
6
Biological Network Inference and analysis using SEBINI and CABIN.
Methods Mol Biol. 2009;541:551-76. doi: 10.1007/978-1-59745-243-4_24.
8
Gene expression complex networks: synthesis, identification, and analysis.
J Comput Biol. 2011 Oct;18(10):1353-67. doi: 10.1089/cmb.2010.0118. Epub 2011 May 6.
9
Analysis of gene sets based on the underlying regulatory network.
J Comput Biol. 2009 Mar;16(3):407-26. doi: 10.1089/cmb.2008.0081.
10
Network inference with ensembles of bi-clustering trees.
BMC Bioinformatics. 2019 Oct 28;20(1):525. doi: 10.1186/s12859-019-3104-y.

引用本文的文献

1
Dissecting Pathway Disturbances Using Network Topology and Multi-platform Genomics Data.
Stat Biosci. 2018 Apr;10(1):86-106. doi: 10.1007/s12561-017-9193-0. Epub 2017 May 4.
2
Differential Network Analysis: A Statistical Perspective.
Wiley Interdiscip Rev Comput Stat. 2021 Mar-Apr;13(2). doi: 10.1002/wics.1508. Epub 2020 Apr 6.
3
On the influence of several factors on pathway enrichment analysis.
Brief Bioinform. 2022 May 13;23(3). doi: 10.1093/bib/bbac143.
4
netgsa: Fast computation and interactive visualization for topology-based pathway enrichment analysis.
PLoS Comput Biol. 2021 Jun 11;17(6):e1008979. doi: 10.1371/journal.pcbi.1008979. eCollection 2021 Jun.
5
Application of Differential Network Enrichment Analysis for Deciphering Metabolic Alterations.
Metabolites. 2020 Nov 24;10(12):479. doi: 10.3390/metabo10120479.
6
Revisiting the use of graph centrality models in biological pathway analysis.
BioData Min. 2020 Jun 16;13:5. doi: 10.1186/s13040-020-00214-x. eCollection 2020.
7
A comparative study of topology-based pathway enrichment analysis methods.
BMC Bioinformatics. 2019 Nov 4;20(1):546. doi: 10.1186/s12859-019-3146-1.
9
Predicting instances of pathway ontology classes for pathway integration.
J Biomed Semantics. 2019 Jun 13;10(1):11. doi: 10.1186/s13326-019-0202-8.
10
Gene set enrichment for reproducible science: comparison of CERNO and eight other algorithms.
Bioinformatics. 2019 Dec 15;35(24):5146-5154. doi: 10.1093/bioinformatics/btz447.

本文引用的文献

1
Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs.
Biometrika. 2010 Sep;97(3):519-538. doi: 10.1093/biomet/asq038. Epub 2010 Jul 9.
2
Analysis of gene sets based on the underlying regulatory network.
J Comput Biol. 2009 Mar;16(3):407-26. doi: 10.1089/cmb.2008.0081.
3
MMG: a probabilistic tool to identify submodules of metabolic pathways.
Bioinformatics. 2008 Apr 15;24(8):1078-84. doi: 10.1093/bioinformatics/btn066. Epub 2008 Feb 21.
4
Incorporating gene networks into statistical tests for genomic data via a spatially correlated mixture model.
Bioinformatics. 2008 Feb 1;24(3):404-11. doi: 10.1093/bioinformatics/btm612. Epub 2007 Dec 14.
6
A Markov random field model for network-based analysis of genomic data.
Bioinformatics. 2007 Jun 15;23(12):1537-44. doi: 10.1093/bioinformatics/btm129. Epub 2007 May 5.
7
A hidden Markov model-based approach for identifying timing differences in gene expression under different experimental factors.
Bioinformatics. 2007 Apr 1;23(7):842-9. doi: 10.1093/bioinformatics/btl667. Epub 2007 Jan 19.
8
Functional hierarchical models for identifying genes with different time-course expression profiles.
Biometrics. 2006 Jun;62(2):534-44. doi: 10.1111/j.1541-0420.2005.00505.x.
9
Calculating the statistical significance of changes in pathway activity from gene expression data.
Stat Appl Genet Mol Biol. 2004;3:Article16. doi: 10.2202/1544-6115.1055. Epub 2004 Jun 22.
10
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50. doi: 10.1073/pnas.0506580102. Epub 2005 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验