Suppr超能文献

eBreCaP:基于极限学习机的乳腺癌生存预测模型。

eBreCaP: extreme learning-based model for breast cancer survival prediction.

机构信息

Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab 147001, India.

出版信息

IET Syst Biol. 2020 Jun;14(3):160-169. doi: 10.1049/iet-syb.2019.0087.

Abstract

Breast cancer is the second leading cause of death in the world. Breast cancer research is focused towards its early prediction, diagnosis, and prognosis. Breast cancer can be predicted on omics profiles, clinical tests, and pathological images. The omics profiles comprise of genomic, proteomic, and transcriptomic profiles that are available as high-dimensional datasets. Survival prediction is carried out on omics data to predict early the onset of disease, relapse, reoccurrence of diseases, and biomarker identification. The early prediction of breast cancer is desired for the effective treatment of patients as delay can aggravate the staging of cancer. In this study, extreme learning machine (ELM) based model for breast cancer survival prediction named eBreCaP is proposed. It integrates the genomic (gene expression, copy number alteration, DNA methylation, protein expression) and pathological image datasets; and trains them using an ensemble of ELM with the six best-chosen models suitable to be applied on integrated data. eBreCaP has been evaluated on nine performance parameters, namely sensitivity, specificity, precision, accuracy, Matthews correlation coefficient, area under curve, area under precision-recall, hazard ratio, and concordance Index. eBreCaP has achieved an accuracy of 85% for early breast cancer survival prediction using the ensemble of ELM with gradient boosting.

摘要

乳腺癌是全球第二大死亡原因。乳腺癌的研究重点是早期预测、诊断和预后。乳腺癌可以通过组学谱、临床检测和病理图像进行预测。组学谱包括基因组、蛋白质组和转录组谱,这些谱都是高维数据集。在组学数据上进行生存预测,以早期预测疾病的发作、复发、疾病的再发以及生物标志物的识别。早期预测乳腺癌是为了有效治疗患者,因为延迟会加重癌症的分期。在这项研究中,提出了一种基于极端学习机(ELM)的乳腺癌生存预测模型 eBreCaP。它集成了基因组(基因表达、拷贝数改变、DNA 甲基化、蛋白质表达)和病理图像数据集,并使用适合应用于集成数据的六个最佳选择模型的 ELM 集成进行训练。eBreCaP 使用梯度提升的 ELM 集成在九个性能参数上进行了评估,即敏感性、特异性、精度、准确性、马修斯相关系数、曲线下面积、精度-召回曲线下面积、风险比和一致性指数。eBreCaP 实现了使用梯度提升的 ELM 集成对早期乳腺癌生存预测的 85%的准确率。

相似文献

1
eBreCaP: extreme learning-based model for breast cancer survival prediction.
IET Syst Biol. 2020 Jun;14(3):160-169. doi: 10.1049/iet-syb.2019.0087.
2
Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
J Biomed Inform. 2015 Aug;56:220-8. doi: 10.1016/j.jbi.2015.05.019. Epub 2015 Jun 3.
3
Integrating genomic data and pathological images to effectively predict breast cancer clinical outcome.
Comput Methods Programs Biomed. 2018 Jul;161:45-53. doi: 10.1016/j.cmpb.2018.04.008. Epub 2018 Apr 19.
7
Machine learning models in breast cancer survival prediction.
Technol Health Care. 2016;24(1):31-42. doi: 10.3233/THC-151071.
8
Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
Methods. 2017 Jul 15;124:100-107. doi: 10.1016/j.ymeth.2017.06.010. Epub 2017 Jun 13.
9
Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.
BMC Med Inform Decis Mak. 2020 Sep 15;20(1):225. doi: 10.1186/s12911-020-01225-8.

引用本文的文献

3
Publicly available datasets of breast histopathology H&E whole-slide images: A scoping review.
J Pathol Inform. 2024 Feb 1;15:100363. doi: 10.1016/j.jpi.2024.100363. eCollection 2024 Dec.
4
FGCNSurv: dually fused graph convolutional network for multi-omics survival prediction.
Bioinformatics. 2023 Aug 1;39(8). doi: 10.1093/bioinformatics/btad472.
6
Software system to predict the infection in COVID-19 patients using deep learning and web of things.
Softw Pract Exp. 2022 Apr;52(4):868-886. doi: 10.1002/spe.3011. Epub 2021 Jun 24.
7
Optimal control methods for drug delivery in cancerous tumour by anti-angiogenic therapy and chemotherapy.
IET Syst Biol. 2021 Feb;15(1):14-25. doi: 10.1049/syb2.12010. Epub 2021 Jan 25.

本文引用的文献

1
A Machine Learning Approach for Identifying Gene Biomarkers Guiding the Treatment of Breast Cancer.
Front Genet. 2019 Mar 27;10:256. doi: 10.3389/fgene.2019.00256. eCollection 2019.
2
Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module.
PLoS One. 2019 Mar 29;14(3):e0214587. doi: 10.1371/journal.pone.0214587. eCollection 2019.
3
SALMON: Survival Analysis Learning With Multi-Omics Neural Networks on Breast Cancer.
Front Genet. 2019 Mar 8;10:166. doi: 10.3389/fgene.2019.00166. eCollection 2019.
4
Classifying Breast Cancer Subtypes Using Multiple Kernel Learning Based on Omics Data.
Genes (Basel). 2019 Mar 7;10(3):200. doi: 10.3390/genes10030200.
5
Extreme learning machine Cox model for high-dimensional survival analysis.
Stat Med. 2019 May 30;38(12):2139-2156. doi: 10.1002/sim.8090. Epub 2019 Jan 10.
6
A guide to deep learning in healthcare.
Nat Med. 2019 Jan;25(1):24-29. doi: 10.1038/s41591-018-0316-z. Epub 2019 Jan 7.
7
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.
8
A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Feb 15. doi: 10.1109/TCBB.2018.2806438.
9
Integrating genomic data and pathological images to effectively predict breast cancer clinical outcome.
Comput Methods Programs Biomed. 2018 Jul;161:45-53. doi: 10.1016/j.cmpb.2018.04.008. Epub 2018 Apr 19.
10
Opportunities and obstacles for deep learning in biology and medicine.
J R Soc Interface. 2018 Apr;15(141). doi: 10.1098/rsif.2017.0387.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验