Suppr超能文献

枯草芽孢杆菌 MenD 催化甲萘醌生物合成第一步的结构与反应性。

Structure and reactivity of Bacillus subtilis MenD catalyzing the first committed step in menaquinone biosynthesis.

机构信息

Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.

出版信息

J Mol Biol. 2010 Aug 13;401(2):253-64. doi: 10.1016/j.jmb.2010.06.025. Epub 2010 Jun 18.

Abstract

The first committed step in the classical biosynthetic route to menaquinone (vitamin K(2)) is a Stetter-like conjugate addition of alpha-ketoglutarate with isochorismate. This reaction is catalyzed by the thiamine diphosphate and metal-ion-dependent 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexadiene-1-carboxylate synthase (MenD). The medium-resolution (2.35 A) crystal structure of Bacillus subtilis MenD with cofactor and Mn(2+) has been determined. Based on structure-sequence comparisons and modeling, a two-stage mechanism that is primarily driven by the chemical properties of the cofactor is proposed. Hypotheses for the molecular determinants of substrate recognition were formulated. Five basic residues (Arg32, Arg106, Arg409, Arg428, and Lys299) are postulated to interact with carboxylate and hydroxyl groups to align substrates for catalysis in combination with a cluster of non-polar residues (Ile489, Phe490, and Leu493) on one side of the active site. The powerful combination of site-directed mutagenesis, where each of the eight residues is replaced by alanine, and steady-state kinetic measurements has been exploited to address these hypotheses. Arg409 plays a significant role in binding both substrates while Arg428 contributes mainly to binding of alpha-ketoglutarate. Arg32 and in particular Arg106 are critical for recognition of isochorismate. Mutagenesis of Phe490 and Ile489 has the most profound influence on catalytic efficiency, indicating that these two residues are important for binding of isochorismate and for stabilizing the cofactor position. These data allow for a detailed description of the structure-reactivity relationship that governs MenD function and refinement of the model for the catalytic intermediate that supports the Stetter-like conjugate addition.

摘要

经典生物合成menaquinone(维生素 K(2))途径的第一步是α-酮戊二酸与异戊烯焦磷酸的Stetter 样共轭加成。该反应由硫胺素二磷酸和金属离子依赖的 2-琥珀酰-5-烯醇丙酮酰基-6-羟基-3-环己二烯-1-羧酸合酶(MenD)催化。枯草芽孢杆菌 MenD 与辅因子和 Mn(2+)的中分辨率(2.35 A)晶体结构已被确定。基于结构-序列比较和建模,提出了一个主要由辅因子化学性质驱动的两阶段机制。提出了分子决定因素识别的假设。假设五个碱性残基(Arg32、Arg106、Arg409、Arg428 和 Lys299)与羧基和羟基相互作用,将底物排列在活性位点的一侧,与非极性残基(Ile489、Phe490 和 Leu493)簇一起用于催化。通过定点突变,将 8 个残基中的每个残基都替换为丙氨酸,并结合稳态动力学测量,利用这种强大的组合来解决这些假设。Arg409 在结合两种底物方面发挥重要作用,而 Arg428 主要对结合α-酮戊二酸起作用。Arg32 特别是 Arg106 对异戊烯焦磷酸的识别至关重要。突变 Phe490 和 Ile489 对催化效率的影响最为深远,表明这两个残基对于结合异戊烯焦磷酸以及稳定辅因子位置都很重要。这些数据允许详细描述控制 MenD 功能的结构-反应性关系,并对支持 Stetter 样共轭加成的催化中间物模型进行细化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验