Suppr超能文献

将酶学数据整合到枯草芽孢杆菌基因组尺度代谢模型中可提高表型预测能力,并可用于设计聚-γ-谷氨酸生产菌株的计算机辅助设计。

Integration of enzymatic data in Bacillus subtilis genome-scale metabolic model improves phenotype predictions and enables in silico design of poly-γ-glutamic acid production strains.

机构信息

Laboratory of Bioinformatics, Mathematical Modelling and Synthetic Biology, Dep. Electrical, Computer and Biomedical Engineering, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy.

Centre for Health Technologies, University of Pavia, Via Ferrata 5, 27100, Pavia, Italy.

出版信息

Microb Cell Fact. 2019 Jan 9;18(1):3. doi: 10.1186/s12934-018-1052-2.

Abstract

BACKGROUND

Genome-scale metabolic models (GEMs) allow predicting metabolic phenotypes from limited data on uptake and secretion fluxes by defining the space of all the feasible solutions and excluding physio-chemically and biologically unfeasible behaviors. The integration of additional biological information in genome-scale models, e.g., transcriptomic or proteomic profiles, has the potential to improve phenotype prediction accuracy. This is particularly important for metabolic engineering applications where more accurate model predictions can translate to more reliable model-based strain design.

RESULTS

Here we present a GEM with Enzymatic Constraints using Kinetic and Omics data (GECKO) model of Bacillus subtilis, which uses publicly available proteomic data and enzyme kinetic parameters for central carbon (CC) metabolic reactions to constrain the flux solution space. This model allows more accurate prediction of the flux distribution and growth rate of wild-type and single-gene/operon deletion strains compared to a standard genome-scale metabolic model. The flux prediction error decreased by 43% and 36% for wild-type and mutants respectively. The model additionally increased the number of correctly predicted essential genes in CC pathways by 2.5-fold and significantly decreased flux variability in more than 80% of the reactions with variable flux. Finally, the model was used to find new gene deletion targets to optimize the flux toward the biosynthesis of poly-γ-glutamic acid (γ-PGA) polymer in engineered B. subtilis. We implemented the single-reaction deletion targets identified by the model experimentally and showed that the new strains have a twofold higher γ-PGA concentration and production rate compared to the ancestral strain.

CONCLUSIONS

This work confirms that integration of enzyme constraints is a powerful tool to improve existing genome-scale models, and demonstrates the successful use of enzyme-constrained models in B. subtilis metabolic engineering. We expect that the new model can be used to guide future metabolic engineering efforts in the important industrial production host B. subtilis.

摘要

背景

基因组规模代谢模型(GEM)通过定义所有可行解的空间并排除生理化学和生物上不可行的行为,允许根据摄取和分泌通量的有限数据预测代谢表型。在基因组规模模型中整合其他生物学信息,例如转录组或蛋白质组谱,有可能提高表型预测的准确性。这对于代谢工程应用尤其重要,因为更准确的模型预测可以转化为更可靠的基于模型的菌株设计。

结果

我们在这里介绍了一个基于动力学和组学数据的枯草芽孢杆菌酶约束基因组规模代谢模型(GECKO),该模型使用了公开的蛋白质组数据和酶动力学参数来约束中央碳(CC)代谢反应的通量解空间。与标准基因组规模代谢模型相比,该模型可以更准确地预测野生型和单基因/操纵子缺失菌株的通量分布和生长速率。通量预测误差分别降低了 43%和 36%。该模型还将 CC 途径中正确预测的必需基因数量增加了 2.5 倍,并显著降低了 80%以上具有可变通量的反应中的通量可变性。最后,该模型用于寻找新的基因缺失靶点,以优化工程枯草芽孢杆菌中聚-γ-谷氨酸(γ-PGA)聚合物的合成通量。我们通过实验实施了模型确定的单反应缺失靶点,并表明新菌株的 γ-PGA 浓度和生产速率比原始菌株高两倍。

结论

这项工作证实了整合酶约束是改进现有基因组规模模型的有力工具,并证明了酶约束模型在枯草芽孢杆菌代谢工程中的成功应用。我们预计,新模型可用于指导未来在重要工业生产宿主枯草芽孢杆菌中的代谢工程努力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb06/6325765/c2cc5f323019/12934_2018_1052_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验