Laboratory of Structural Biology, School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand.
School of Physical and Chemical Sciences, Biomolecular Interaction Centre (BIC), and Maurice Wilkins Centre for Molecular Biodiscovery, University of Canterbury, Christchurch 8041, New Zealand.
J Biol Chem. 2020 Mar 20;295(12):3759-3770. doi: 10.1074/jbc.RA119.012158. Epub 2020 Feb 6.
Menaquinone (vitamin K) plays a vital role in energy generation and environmental adaptation in many bacteria, including the human pathogen (). Although menaquinone levels are known to be tightly linked to the cellular redox/energy status of the cell, the regulatory mechanisms underpinning this phenomenon are unclear. The first committed step in menaquinone biosynthesis is catalyzed by MenD, a thiamine diphosphate-dependent enzyme comprising three domains. Domains I and III form the MenD active site, but no function has yet been ascribed to domain II. Here, we show that the last cytosolic metabolite in the menaquinone biosynthesis pathway, 1,4-dihydroxy-2-naphthoic acid (DHNA), binds to domain II of -MenD and inhibits its activity. Using X-ray crystallography of four apo- and cofactor-bound -MenD structures, along with several spectroscopy assays, we identified three arginine residues (Arg-97, Arg-277, and Arg-303) that are important for both enzyme activity and the feedback inhibition by DHNA. Among these residues, Arg-277 appeared to be particularly important for signal propagation from the allosteric site to the active site. This is the first evidence of feedback regulation of the menaquinone biosynthesis pathway in bacteria, identifying a protein-level regulatory mechanism that controls menaquinone levels within the cell and may therefore represent a good target for disrupting menaquinone biosynthesis in .
甲萘醌(维生素 K)在许多细菌(包括人类病原体 )的能量生成和环境适应中起着至关重要的作用。尽管甲萘醌水平与细胞的氧化还原/能量状态密切相关,但支持这一现象的调节机制尚不清楚。甲萘醌生物合成的第一步是由 MenD 催化的,MenD 是一种依赖硫胺素二磷酸的酶,由三个结构域组成。结构域 I 和 III 构成了 MenD 的活性位点,但结构域 II 的功能尚未确定。在这里,我们表明,甲萘醌生物合成途径中的最后一个细胞质代谢物 1,4-二羟基-2-萘甲酸(DHNA)与 -MenD 的结构域 II 结合并抑制其活性。通过对四个 apo-和辅因子结合的 -MenD 结构的 X 射线晶体学以及几种光谱测定,我们确定了三个精氨酸残基(Arg-97、Arg-277 和 Arg-303)对酶活性和 DHNA 的反馈抑制都很重要。在这些残基中,Arg-277 似乎对从变构位点到活性位点的信号传递特别重要。这是细菌中甲萘醌生物合成途径反馈调节的第一个证据,确定了一种蛋白质水平的调节机制,该机制控制细胞内的甲萘醌水平,因此可能代表破坏 中甲萘醌生物合成的良好靶标。