Heidbreder Meike, Endesfelder Ulrike, van de Linde Sebastian, Hennig Simon, Widera Darius, Kaltschmidt Barbara, Kaltschmidt Christian, Heilemann Mike
Physics Department, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany.
Biochim Biophys Acta. 2010 Oct;1803(10):1224-9. doi: 10.1016/j.bbamcr.2010.06.004. Epub 2010 Jun 23.
We introduce semiconductor quantum dot-based fluorescence imaging with approximately 2-fold increased optical resolution in three dimensions as a method that allows both studying cellular structures and spatial organization of biomolecules in membranes and subcellular organelles. Target biomolecules are labelled with quantum dots via immunocytochemistry. The resolution enhancement is achieved by three-photon absorption of quantum dots and subsequent fluorescence emission from a higher-order excitonic state. Different from conventional multiphoton microscopy, this approach can be realized on any confocal microscope without the need for pulsed excitation light. We demonstrate quantum dot triexciton imaging (QDTI) of the microtubule network of U373 cells, 3D imaging of TNF receptor 2 on the plasma membrane of HeLa cells, and multicolor 3D imaging of mitochondrial cytochrome c oxidase and actin in COS-7 cells.
我们引入了基于半导体量子点的荧光成像技术,其三维光学分辨率提高了约2倍,该方法能够同时研究细胞膜和亚细胞器中生物分子的细胞结构及空间组织。通过免疫细胞化学方法,用量子点标记目标生物分子。分辨率的提高是通过量子点的三光子吸收以及随后从高阶激子态发出荧光来实现的。与传统的多光子显微镜不同,这种方法可以在任何共聚焦显微镜上实现,无需脉冲激发光。我们展示了U373细胞微管网络的量子点三激子成像(QDTI)、HeLa细胞质膜上肿瘤坏死因子受体2的三维成像以及COS-7细胞中线粒体细胞色素c氧化酶和肌动蛋白的多色三维成像。