Suppr超能文献

修复扩散加权图像中的心脏和头部运动伪影。

Patching cardiac and head motion artefacts in diffusion-weighted images.

机构信息

Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, HB Nijmegen, The Netherlands.

出版信息

Neuroimage. 2010 Nov 1;53(2):565-75. doi: 10.1016/j.neuroimage.2010.06.014. Epub 2010 Jun 16.

Abstract

Motion artefacts are an important but often disregarded problem in diffusion-weighted imaging, which can readily lead to corrupt diffusion model estimations. The new processing method proposed in this paper uses robust tensor estimation that is spatially informed to efficiently detect the most frequently occurring artefacts, namely those that result from head and cardiac motion. Simulations demonstrate that the method is more robust and accurate than previous methods. The tensor estimates are more accurate in motion artefact-free conditions, less sensitive to increases in artefact magnitude and more resistant to increasing artefact frequency. Evaluation with real diffusion-weighted (DW) imaging data shows that the method works excellently, even for datasets with a high degree of motion that otherwise need to be discarded. The method is not limited to diffusion tensor imaging but also yields objective artefact reflecting weights that can be used to inform subsequent processing or estimation of higher-order diffusion models.

摘要

运动伪影是扩散加权成像中的一个重要但常被忽视的问题,它很容易导致扩散模型估计的错误。本文提出的新处理方法使用了稳健的张量估计,这种估计具有空间信息,可以有效地检测最常见的伪影,即那些由于头部和心脏运动引起的伪影。模拟结果表明,该方法比以前的方法更稳健和准确。在无运动伪影的情况下,张量估计更准确,对伪影幅度的增加不敏感,对伪影频率的增加抵抗力更强。使用真实的扩散加权(DW)成像数据进行评估表明,该方法效果非常好,即使对于运动程度很高的数据集,否则这些数据集需要被丢弃。该方法不仅限于扩散张量成像,还可以产生客观的伪影反射权重,可用于通知后续处理或估计更高阶的扩散模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验