文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在外磁场作用下,生物相容性超顺磁性氧化铁纳米颗粒进入恶性细胞的细胞摄取增加。

Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field.

机构信息

Kolektor Group, Nanotesla Institute, Stegne 29, 1521, Ljubljana, Slovenia.

出版信息

J Membr Biol. 2010 Jul;236(1):167-79. doi: 10.1007/s00232-010-9271-4. Epub 2010 Jul 3.


DOI:10.1007/s00232-010-9271-4
PMID:20602230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2914263/
Abstract

Superparamagnetic iron oxide nanoparticles (SPIONs) are used as delivery systems for different therapeutics including nucleic acids for magnetofection-mediated gene therapy. The aim of our study was to evaluate physicochemical properties, biocompatibility, cellular uptake and trafficking pathways of the custom-synthesized SPIONs for their potential use in magnetofection. Custom-synthesized SPIONs were tested for size, shape, crystalline composition and magnetic behavior using a transmission electron microscope, X-ray diffractometer and magnetometer. SPIONs were dispersed in different aqueous media to obtain ferrofluids, which were tested for pH and stability using a pH meter and zetameter. Cytotoxicity was determined using the MTS and clonogenic assays. Cellular uptake and trafficking pathways were qualitatively evaluated by transmission electron microscopy and quantitatively by inductively coupled plasma atomic emission spectrometry. SPIONs were composed of an iron oxide core with a diameter of 8-9 nm, coated with a 2-nm-thick layer of silica. SPIONs, dispersed in 0.9% NaCl solution, resulted in a stable ferrofluid at physiological pH for several months. SPIONs were not cytotoxic in a broad range of concentrations and were readily internalized into different cells by endocytosis. Exposure to neodymium-iron-boron magnets significantly increased the cellular uptake of SPIONs, predominantly into malignant cells. The prepared SPIONs displayed adequate physicochemical and biomedical properties for potential use in magnetofection. Their cellular uptake was dependent on the cell type, and their accumulation within the cells was dependent on the duration of exposure to an external magnetic field.

摘要

超顺磁性氧化铁纳米颗粒(SPIONs)被用作递送系统,用于传递不同的治疗剂,包括用于磁转染介导基因治疗的核酸。我们的研究目的是评估定制合成的 SPIONs 的物理化学性质、生物相容性、细胞摄取和转运动力学,以评估其在磁转染中的潜在用途。使用透射电子显微镜、X 射线衍射仪和磁力计对定制合成的 SPIONs 的大小、形状、晶体组成和磁性能进行了测试。将 SPIONs 分散在不同的水介质中,以获得铁磁流体,并用 pH 计和 zetameter 测试其 pH 值和稳定性。使用 MTS 和集落形成测定法测定细胞毒性。通过透射电子显微镜定性评估细胞摄取和转运动力学,通过电感耦合等离子体原子发射光谱法定量评估细胞摄取和转运动力学。SPIONs 由直径为 8-9nm 的氧化铁核组成,表面覆盖有 2nm 厚的二氧化硅层。SPIONs 在 0.9%NaCl 溶液中分散,在生理 pH 值下可稳定存在数月。在广泛的浓度范围内,SPIONs 没有细胞毒性,并且很容易通过内吞作用被不同的细胞内化。暴露于钕铁硼磁铁可显著增加 SPIONs 的细胞摄取,主要进入恶性细胞。所制备的 SPIONs 具有足够的物理化学和生物医学特性,可用于磁转染。它们的细胞摄取取决于细胞类型,而它们在细胞内的积累取决于暴露于外磁场的持续时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/3ae6e25d4deb/232_2010_9271_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/fbd6fa4ec1aa/232_2010_9271_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/220e894ed09f/232_2010_9271_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/44ab31cae52c/232_2010_9271_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/e2687b785313/232_2010_9271_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/114c64e6c485/232_2010_9271_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/06cc67e81c6c/232_2010_9271_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/70deff9c568b/232_2010_9271_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/95b657ec1671/232_2010_9271_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/56360992eaad/232_2010_9271_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/3ae6e25d4deb/232_2010_9271_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/fbd6fa4ec1aa/232_2010_9271_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/220e894ed09f/232_2010_9271_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/44ab31cae52c/232_2010_9271_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/e2687b785313/232_2010_9271_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/114c64e6c485/232_2010_9271_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/06cc67e81c6c/232_2010_9271_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/70deff9c568b/232_2010_9271_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/95b657ec1671/232_2010_9271_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/56360992eaad/232_2010_9271_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae6e/2914263/3ae6e25d4deb/232_2010_9271_Fig10_HTML.jpg

相似文献

[1]
Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field.

J Membr Biol. 2010-7-3

[2]
Biotechnological approach to induce human fibroblast apoptosis using superparamagnetic iron oxide nanoparticles.

J Inorg Biochem. 2020-5

[3]
Polyethylene Glycol-Chitosan Oligosaccharide-Coated Superparamagnetic Iron Oxide Nanoparticles: A Novel Drug Delivery System for Curcumin Diglutaric Acid.

Biomolecules. 2020-1-2

[4]
Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapor synthesis can target GLUT1 overexpressing tumors: In vitro tests and in vivo preliminary assessment.

PLoS One. 2022

[5]
Superparamagnetic iron oxide nanoparticles coated with mannan for macrophage targeting.

J Nanosci Nanotechnol. 2008-10

[6]
Superparamagnetic iron-oxide nanoparticles mPEG350- and mPEG2000-coated: cell uptake and biocompatibility evaluation.

Nanomedicine. 2016-1-6

[7]
Biocompatible superparamagnetic core-shell nanoparticles for potential use in hyperthermia-enabled drug release and as an enhanced contrast agent.

Nanotechnology. 2020-9-11

[8]
2-Deoxy-D-Glucose Modified Magnetic Nanoparticles with Dual Functional Properties: Nanothermotherapy and Magnetic Resonance Imaging.

J Nanosci Nanotechnol. 2016-3

[9]
Triple Therapy of HER2 Cancer Using Radiolabeled Multifunctional Iron Oxide Nanoparticles and Alternating Magnetic Field.

Cancer Biother Radiopharm. 2016-11

[10]
Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging.

Carbohydr Polym. 2013-10-26

引用本文的文献

[1]
Uptake Mechanism of Riboflavin-Functionalized Superparamagnetic Iron Oxide Nanoparticles in Triple-Negative Breast Cancer Cells.

ACS Appl Bio Mater. 2025-7-21

[2]
Photocatalytic Degradation of Antibiotics via Exploitation of a Magnetic Nanocomposite: A Green Nanotechnology Approach toward Drug-Contaminated Wastewater Reclamation.

ACS Omega. 2024-2-6

[3]
Advances in screening hyperthermic nanomedicines in 3D tumor models.

Nanoscale Horiz. 2024-2-26

[4]
Bioactive superparamagnetic iron oxide-gold nanoparticles regulated by a dynamic magnetic field induce neuronal Ca influx and differentiation.

Bioact Mater. 2023-4-5

[5]
Preparation of a 3D printable high-performance GelMA hydrogel loading with magnetic cobalt ferrite nanoparticles.

Front Bioeng Biotechnol. 2023-3-2

[6]
Superparamagnetic Iron-Oxide Nanoparticles Synthesized via Green Chemistry for the Potential Treatment of Breast Cancer.

Molecules. 2023-3-3

[7]
Interfacial engineered iron oxide nanoring for T2-weighted magnetic resonance imaging-guided magnetothermal-chemotherapy.

Front Bioeng Biotechnol. 2022-10-6

[8]
Azo-functionalized superparamagnetic FeO nanoparticles: an efficient adsorbent for the removal of bromocresol green from contaminated water.

RSC Adv. 2022-9-7

[9]
Prodigious therapeutic effects of combining mesenchymal stem cells with magnetic nanoparticles.

World J Stem Cells. 2022-7-26

[10]
Progress, Opportunities, and Challenges of Magneto-Plasmonic Nanoparticles under Remote Magnetic and Light Stimulation for Brain-Tissue and Cellular Regeneration.

Nanomaterials (Basel). 2022-6-29

本文引用的文献

[1]
Functionalized magnetic nanoparticles as an in vivo delivery system.

Methods Mol Biol. 2009

[2]
Recent advances in magnetofection and its potential to deliver siRNAs in vitro.

Methods Mol Biol. 2009

[3]
Magnetic nanoparticles for gene and drug delivery.

Int J Nanomedicine. 2008

[4]
Neoadjuvant gene delivery of feline granulocyte-macrophage colony-stimulating factor using magnetofection for the treatment of feline fibrosarcomas: a phase I trial.

J Gene Med. 2008-6

[5]
Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells.

Biomacromolecules. 2008-2

[6]
A novel method to prepare water-dispersible magnetic nanoparticles and their biomedical applications: magnetic capture probe and specific cellular uptake.

J Biomed Mater Res A. 2008-11

[7]
Intra-tumoral gene delivery of feIL-2, feIFN-gamma and feGM-CSF using magnetofection as a neoadjuvant treatment option for feline fibrosarcomas: a phase-I study.

J Vet Med A Physiol Pathol Clin Med. 2007-12

[8]
Generation of magnetic nonviral gene transfer agents and magnetofection in vitro.

Nat Protoc. 2007

[9]
Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies.

Eur J Pharm Biopharm. 2008-1

[10]
Study on the endocytosis and the internalization mechanism of aminosilane-coated Fe3O4 nanoparticles in vitro.

J Mater Sci Mater Med. 2007-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索