Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
Cell. 2010 Jul 9;142(1):112-22. doi: 10.1016/j.cell.2010.05.027.
GroEL and GroES form a chaperonin nano-cage for single protein molecules to fold in isolation. The folding properties that render a protein chaperonin dependent are not yet understood. Here, we address this question using a double mutant of the maltose-binding protein DM-MBP as a substrate. Upon spontaneous refolding, DM-MBP populates a kinetically trapped intermediate that is collapsed but structurally disordered. Introducing two long-range disulfide bonds into DM-MBP reduces the entropic folding barrier of this intermediate and strongly accelerates native state formation. Strikingly, steric confinement of the protein in the chaperonin cage mimics the kinetic effect of constraining disulfides on folding, in a manner mediated by negative charge clusters in the cage wall. These findings suggest that chaperonin dependence correlates with the tendency of proteins to populate entropically stabilized folding intermediates. The capacity to rescue proteins from such folding traps may explain the uniquely essential role of chaperonin cages within the cellular chaperone network.
GroEL 和 GroES 形成一个分子伴侣纳米笼,使单个蛋白质分子在隔离状态下折叠。目前还不清楚使蛋白质依赖分子伴侣的折叠特性。在这里,我们使用麦芽糖结合蛋白 DM-MBP 的双突变体作为底物来解决这个问题。在自发重折叠过程中,DM-MBP 会形成一种动力学捕获的中间态,该中间态虽然折叠但结构无序。在 DM-MBP 中引入两个长程二硫键会降低该中间态的熵折叠势垒,并强烈加速天然状态的形成。引人注目的是,蛋白质在分子伴侣笼中的空间限制以一种由笼壁上的负电荷簇介导的方式模拟了对折叠的二硫键的动力学效应。这些发现表明,分子伴侣的依赖性与蛋白质倾向于形成熵稳定的折叠中间态有关。从这种折叠陷阱中拯救蛋白质的能力可能解释了分子伴侣笼在细胞伴侣网络中独特的必需作用。