Institute of Fundamental Sciences-Statistics, Massey University, Palmerston North, New Zealand.
Stat Med. 2010 Oct 15;29(23):2423-37. doi: 10.1002/sim.3995.
Kernel smoothing is routinely used for the estimation of relative risk based on point locations of disease cases and sampled controls over a geographical region. Typically, fixed-bandwidth kernel estimation has been employed, despite the widely recognized problems experienced with this methodology when the underlying densities exhibit the type of spatial inhomogeneity frequently seen in geographical epidemiology. A more intuitive approach is to utilize a spatially adaptive, variable smoothing parameter. In this paper, we examine the properties of the adaptive kernel estimator by both asymptotic analysis and a simulation study, finding advantages over the fixed kernel approach in both the cases. We also look at practical issues with implementation of the adaptive relative risk estimator (including bandwidth choice and boundary correction), and develop a computationally inexpensive method for generating tolerance contours to highlight areas of significantly elevated risk.
核平滑法常用于根据地理区域内疾病病例和抽样对照的点位置来估计相对风险。通常,尽管在基础密度表现出地理流行病学中常见的空间非均匀性类型时,这种方法会遇到广泛认可的问题,但仍采用固定带宽核估计。更直观的方法是使用空间自适应、可变平滑参数。在本文中,我们通过渐近分析和模拟研究来检查自适应核估计器的性质,发现它在两种情况下都优于固定核方法。我们还研究了自适应相对风险估计器实现中的实际问题(包括带宽选择和边界校正),并开发了一种计算成本低的方法来生成容忍轮廓,以突出显著升高风险的区域。