Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand.
Stat Med. 2023 Nov 10;42(25):4556-4569. doi: 10.1002/sim.9875. Epub 2023 Aug 20.
The spatial relative risk function describes differences in the geographical distribution of two types of points, such as locations of cases and controls in an epidemiological study. It is defined as the ratio of the two underlying densities. Estimation of spatial relative risk is typically done using kernel estimates of these densities, but this procedure is often challenging in practice because of the high degree of spatial inhomogeneity in the distributions. This makes it difficult to obtain estimates of the relative risk that are stable in areas of sparse data while retaining necessary detail elsewhere, and consequently difficult to distinguish true risk hotspots from stochastic bumps in the risk function. We study shrinkage estimators of the spatial relative risk function to address these problems. In particular, we propose a new lasso-type estimator that shrinks a standard kernel estimator of the log-relative risk function towards zero. The shrinkage tuning parameter can be adjusted to help quantify the degree of evidence for the existence of risk hotspots, or selected to optimize a cross-validation criterion. The performance of the lasso estimator is encouraging both on a simulation study and on real-world examples.
空间相对风险函数描述了两种类型的点(例如,流行病学研究中病例和对照的位置)在地理分布上的差异。它定义为两个基础密度的比值。空间相对风险的估计通常使用这些密度的核估计来完成,但由于分布的高度空间非均质性,该过程在实践中常常具有挑战性。这使得难以在数据稀疏的区域获得稳定的相对风险估计值,同时在其他地方保留必要的细节,因此难以区分真正的风险热点和风险函数中的随机波动。我们研究空间相对风险函数的收缩估计量来解决这些问题。特别是,我们提出了一种新的套索型估计量,它将对数相对风险函数的标准核估计量向零收缩。收缩调整参数可以进行调整以帮助量化存在风险热点的证据程度,或者选择优化交叉验证标准。套索估计量的性能在模拟研究和实际示例中都令人鼓舞。