Department of Molecular Biology, TPC15, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
Inorg Chem. 2010 Aug 16;49(16):7266-81. doi: 10.1021/ic902051t.
Models for the Mn-Fe active site structure of ribonucleotide reductase (RNR) from pathogenic bacteria Chlamydia trachomatis (Ct) in different oxidation states have been studied in this paper, using broken-symmetry density functional theory (DFT) incorporated with the conductor like screening (COSMO) solvation model and also with finite-difference Poisson-Boltzmann self-consistent reaction field (PB-SCRF) calculations. The detailed structures for the reduced Mn(II)-Fe(II), the met Mn(III)-Fe(III), the oxidized Mn(IV)-Fe(III) and the superoxidized Mn(IV)-Fe(IV) states are predicted. The calculated properties, including geometries, (57)Fe Mossbauer isomer shifts and quadrupole splittings, and (57)Fe and (55)Mn electron nuclear double resonance (ENDOR) hyperfine coupling constants, are compared with the available experimental data. The Mössbauer and energetic calculations show that the (mu-oxo, mu-hydroxo) models better represent the structure of the Mn(IV)-Fe(III) state than the di-mu-oxo models. The predicted Mn(IV)-Fe(III) distances (2.95 and 2.98 A) in the (mu-oxo, mu-hydroxo) models are in agreement with the extended X-ray absorption fine structure (EXAFS) experimental value of 2.92 A (Younker et al. J. Am. Chem. Soc. 2008, 130, 15022-15027). The effect of the protein and solvent environment on the assignment of the Mn metal position is examined by comparing the relative energies of alternative mono-Mn(II) active site structures. It is proposed that if the Mn(II)-Fe(II) protein is prepared with prior addition of Mn(II) or with Mn(II) richer than Fe(II), Mn is likely positioned at metal site 2, which is further from Phe127.
本文研究了不同氧化态下来自病原体沙眼衣原体(Ct)的核糖核苷酸还原酶(RNR)的 Mn-Fe 活性位点结构模型,使用了非对称密度泛函理论(DFT)结合导体相似屏蔽(COSMO)溶剂化模型,以及有限差分泊松-玻尔兹曼自洽反应场(PB-SCRF)计算。预测了还原态 Mn(II)-Fe(II)、配位 Mn(III)-Fe(III)、氧化态 Mn(IV)-Fe(III)和超氧化态 Mn(IV)-Fe(IV)的详细结构。计算得到的几何形状、(57)Fe Mössbauer 同晶位移和四极分裂以及 (57)Fe 和 (55)Mn 电子核双共振(ENDOR)超精细耦合常数等性质与可用的实验数据进行了比较。Mössbauer 和能量计算表明,(μ-氧,μ-羟)模型比双μ-氧模型更好地代表了 Mn(IV)-Fe(III)状态的结构。(μ-氧,μ-羟)模型中预测的 Mn(IV)-Fe(III)距离(2.95 和 2.98 A)与扩展 X 射线吸收精细结构(EXAFS)实验值 2.92 A(Younker 等人,J. Am. Chem. Soc. 2008, 130, 15022-15027)一致。通过比较替代单 Mn(II)活性位点结构的相对能量,研究了蛋白质和溶剂环境对 Mn 金属位置分配的影响。提出如果用 Mn(II)或 Mn(II)比 Fe(II)更丰富的 Mn(II)预先添加到 Mn(II)-Fe(II)蛋白中,Mn 很可能位于离 Phe127 更远的金属位 2。