Suppr超能文献

沙眼衣原体核糖核苷酸还原酶R2亚基中锰铁位点的氧化还原中间体:X射线吸收和电子顺磁共振研究

Redox intermediates of the Mn-Fe Site in subunit R2 of Chlamydia trachomatis ribonucleotide reductase: an X-ray absorption and EPR study.

作者信息

Voevodskaya Nina, Lendzian Friedhelm, Sanganas Oliver, Grundmeier Alexander, Gräslund Astrid, Haumann Michael

机构信息

Department of Biochemistry and Biophysics, Stockholm University, Stockholm 10691, Sweden.

出版信息

J Biol Chem. 2009 Feb 13;284(7):4555-66. doi: 10.1074/jbc.M807190200. Epub 2008 Dec 17.

Abstract

The R2 protein of class I ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) can contain a Mn-Fe instead of the standard Fe-Fe cofactor. Ct R2 has a redox-inert phenylalanine replacing the radical-forming tyrosine of classic RNRs, which implies a different mechanism of O(2) activation. We studied the Mn-Fe site by x-ray absorption spectroscopy (XAS) and EPR. Reduced R2 in the R1R2 complex (R2(red)) showed an isotropic six-line EPR signal at g approximately 2 of the Mn(II)Fe(II) state. In oxidized R2 (R2(ox)), the Mn(III)Fe(III) state exhibited EPR g values of 2.013, 2.009, and 2.015. By XAS, Mn-Fe distances and oxidation states of intermediates were determined and assigned as follows: approximately 4.15 A, Mn(II)Fe(II); approximately 3.25 A, Mn(III)Fe(II); approximately 2.90 A, Mn(III)Fe(III); and approximately 2.75 A, Mn(IV)Fe(III). Shortening of the Mn/Fe-ligand bond lengths indicated formation of additional metal bridges, i.e. microO(H) and/or peroxidic species, upon O(2) activation at the site. The structural parameters suggest overall configurations of the Mn-Fe site similar to those of homo-metallic sites in other R2 proteins. However, the approximately 2.90 A and approximately 2.75 A Mn-Fe distances, typical for di-microO(H) metal bridging, are shorter than inter-metal distances in any R2 crystal structure. In diffraction data collection, such bridges may be lost due to rapid x-ray photoreduction of high-valent metal ions, as demonstrated here for Fe(III) by XAS.

摘要

沙眼衣原体(Ct)I类核糖核苷酸还原酶(RNR)的R2蛋白可含有Mn-Fe辅因子,而非标准的Fe-Fe辅因子。Ct R2有一个氧化还原惰性的苯丙氨酸取代了经典RNR中形成自由基的酪氨酸,这意味着其O₂激活机制不同。我们通过X射线吸收光谱(XAS)和电子顺磁共振(EPR)研究了Mn-Fe位点。R1R2复合物中的还原型R2(R2(red))在g约为2处显示出Mn(II)Fe(II)态的各向同性六线EPR信号。在氧化型R2(R2(ox))中,Mn(III)Fe(III)态的EPR g值为2.013、2.009和2.015。通过XAS确定并指定了中间体的Mn-Fe距离和氧化态如下:约4.15 Å,Mn(II)Fe(II);约3.25 Å,Mn(III)Fe(II);约2.90 Å,Mn(III)Fe(III);约2.75 Å,Mn(IV)Fe(III)。Mn/Fe-配体键长的缩短表明在位点处O₂激活时形成了额外的金属桥,即微O(H)和/或过氧化物物种。结构参数表明Mn-Fe位点的整体构型与其他R2蛋白中的同金属位点相似。然而,典型的双微O(H)金属桥接的约2.90 Å和约2.75 Å的Mn-Fe距离比任何R2晶体结构中的金属间距离都短。在衍射数据收集过程中,由于高价金属离子的快速X射线光还原,这些桥可能会丢失,本文通过XAS对Fe(III)的研究证明了这一点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验