Department of Physics and Astronomy and USC Nanocenter, University of South Carolina, Columbia, SC 29208, USA.
Neural Netw. 2010 Sep;23(7):881-6. doi: 10.1016/j.neunet.2010.05.001. Epub 2010 May 31.
Synapses are essential elements for computation and information storage in both real and artificial neural systems. An artificial synapse needs to remember its past dynamical history, store a continuous set of states, and be "plastic" according to the pre-synaptic and post-synaptic neuronal activity. Here we show that all this can be accomplished by a memory-resistor (memristor for short). In particular, by using simple and inexpensive off-the-shelf components we have built a memristor emulator which realizes all required synaptic properties. Most importantly, we have demonstrated experimentally the formation of associative memory in a simple neural network consisting of three electronic neurons connected by two memristor-emulator synapses. This experimental demonstration opens up new possibilities in the understanding of neural processes using memory devices, an important step forward to reproduce complex learning, adaptive and spontaneous behavior with electronic neural networks.
突触是真实和人工神经网络中计算和信息存储的基本要素。人工突触需要记住其过去的动态历史,存储连续的状态,并根据前突触和后突触神经元的活动具有“可塑性”。在这里,我们展示了这一切都可以通过一个记忆电阻器(简称 memristor)来实现。具体来说,通过使用简单且廉价的现成组件,我们构建了一个 memristor 模拟器,它实现了所有必需的突触特性。最重要的是,我们通过实验证明了由通过两个 memristor 模拟器突触连接的三个电子神经元组成的简单神经网络中联想记忆的形成。这个实验演示为使用存储设备理解神经过程开辟了新的可能性,是使用电子神经网络复制复杂学习、自适应和自发行为的重要一步。