Suppr超能文献

基于动态模型平均法的模型不确定性下的在线预测:在冷轧机中的应用

Online Prediction Under Model Uncertainty via Dynamic Model Averaging: Application to a Cold Rolling Mill.

作者信息

Raftery Adrian E, Kárný Miroslav, Ettler Pavel

机构信息

University of Washington, Seattle, WA 98195-4322, (

出版信息

Technometrics. 2010 Feb;52(1):52-66. doi: 10.1198/TECH.2009.08104.

Abstract

We consider the problem of online prediction when it is uncertain what the best prediction model to use is. We develop a method called Dynamic Model Averaging (DMA) in which a state space model for the parameters of each model is combined with a Markov chain model for the correct model. This allows the "correct" model to vary over time. The state space and Markov chain models are both specified in terms of forgetting, leading to a highly parsimonious representation. As a special case, when the model and parameters do not change, DMA is a recursive implementation of standard Bayesian model averaging, which we call recursive model averaging. The method is applied to the problem of predicting the output strip thickness for a cold rolling mill, where the output is measured with a time delay. We found that when only a small number of physically motivated models were considered and one was clearly best, the method quickly converged to the best model, and the cost of model uncertainty was small; indeed DMA performed slightly better than the best physical model. When model uncertainty and the number of models considered were large, our method ensured that the penalty for model uncertainty was small. At the beginning of the process, when control is most difficult, we found that DMA over a large model space led to better predictions than the single best performing physically motivated model. We also applied the method to several simulated examples, and found that it recovered both constant and time-varying regression parameters and model specifications quite well.

摘要

我们考虑在不确定使用何种最佳预测模型的情况下进行在线预测的问题。我们开发了一种称为动态模型平均(Dynamic Model Averaging,DMA)的方法,其中每个模型参数的状态空间模型与正确模型的马尔可夫链模型相结合。这使得“正确”模型能够随时间变化。状态空间模型和马尔可夫链模型均根据遗忘来指定,从而得到一种高度简约的表示形式。作为一种特殊情况,当模型和参数不变时,DMA是标准贝叶斯模型平均的递归实现,我们称之为递归模型平均。该方法应用于冷轧机输出带钢厚度预测问题,其中输出测量存在时间延迟。我们发现,当仅考虑少数基于物理原理的模型且其中一个明显最佳时,该方法能快速收敛到最佳模型,模型不确定性成本较小;实际上,DMA的表现略优于最佳物理模型。当模型不确定性和所考虑的模型数量较大时,我们的方法确保了模型不确定性的惩罚较小。在过程开始时,当控制最为困难时,我们发现,在较大模型空间上进行DMA比单个表现最佳的基于物理原理的模型能带来更好的预测。我们还将该方法应用于几个模拟示例,发现它能很好地恢复常数和时变回归参数以及模型规格。

相似文献

3
On the Quantification of Model Uncertainty: A Bayesian Perspective.模型不确定性的量化:贝叶斯视角。
Psychometrika. 2021 Mar;86(1):215-238. doi: 10.1007/s11336-021-09754-5. Epub 2021 Mar 15.
5
Bayesian Model Averaging for Propensity Score Analysis.用于倾向得分分析的贝叶斯模型平均法
Multivariate Behav Res. 2014 Nov-Dec;49(6):505-17. doi: 10.1080/00273171.2014.928492.
9
Parsimonious Model Averaging With a Diverging Number of Parameters.参数数量不断增加时的简约模型平均法。
J Am Stat Assoc. 2020;115(530):972-984. doi: 10.1080/01621459.2019.1604363. Epub 2019 Jun 19.

引用本文的文献

3
Forecasting nominal exchange rates using a dynamic model averaging framework.使用动态模型平均框架预测名义汇率。
Heliyon. 2024 Oct 11;10(20):e39112. doi: 10.1016/j.heliyon.2024.e39112. eCollection 2024 Oct 30.
7
A Comparison of Methods to Detect Changes in Prediction Models.方法比较:检测预测模型变化。
Methods Inf Med. 2022 May;61(1-02):19-28. doi: 10.1055/s-0042-1742672. Epub 2022 Feb 12.

本文引用的文献

1
What is a hidden Markov model?什么是隐马尔可夫模型?
Nat Biotechnol. 2004 Oct;22(10):1315-6. doi: 10.1038/nbt1004-1315.
2
Profile hidden Markov models.轮廓隐马尔可夫模型
Bioinformatics. 1998;14(9):755-63. doi: 10.1093/bioinformatics/14.9.755.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验