Suppr超能文献

细胞间信号驱动复杂性状的进化:引言-肺部进化发育。

Cell-cell signaling drives the evolution of complex traits: introduction-lung evo-devo.

机构信息

Laboratory for Evolutionary Preventive Medicine, Department of Pediatrics, David Geffen School of Medicine at UCLA, Laboratory for Evolutionary Preventive Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA.

出版信息

Integr Comp Biol. 2009 Aug;49(2):142-54. doi: 10.1093/icb/icp017. Epub 2009 May 11.

Abstract

Physiology integrates biology with the environment through cell-cell interactions at multiple levels. The evolution of the respiratory system has been "deconvoluted" (Torday and Rehan in Am J Respir Cell Mol Biol 31:8-12, 2004) through Gene Regulatory Networks (GRNs) applied to cell-cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell-cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such an evolutionary vertical integration of cell-to-tissue-to-organ-to-physiology of intrinsic cell-cell signaling and extrinsic factors is the reverse of the "top-down" conventional way in which physiologic systems are usually regarded. This novel mechanistic approach, incorporating a "middle-out" cell-cell signaling component, will lead to a readily available algorithm for integrating genes and phenotypes. This symposium surveyed the phylogenetic origins of such vertically integrated mechanisms for the evolution of cell-cell communication as the basis for complex physiologic traits, from sponges to man.

摘要

生理学通过多层次的细胞间相互作用将生物学与环境联系起来。呼吸系统的进化已经通过基因调控网络(GRNs)应用于细胞间通讯而被“分解”(Torday 和 Rehan 在 Am J Respir Cell Mol Biol 31:8-12, 2004),用于研究肺生物学发育、稳态、再生和衰老的各个方面。通过这种方法,我们根据进化原则预测了信号失败对肺发育、稳态和再生的表型后果。这种细胞间通讯模型预测了脊椎动物生理学的其他方面,作为适应反应。例如,肺泡肌细胞向肺泡脂肪细胞的氧诱导分化对于陆生动物适应过去 5 亿年来波动的 Phanarezoic 氧水平的肺进化至关重要。脂肪细胞可以防止氧自由基引起的肺损伤,并促进恒温的出现。此外,它们产生 I 类细胞因子瘦素,增加肺表面活性剂活性和肺泡表面积,增加呼吸氧合和代谢需求的选择压力,最初受到高全身血管压力的限制,但随后通过肾上腺髓质β-肾上腺素能受体机制的进化得到补偿。肺和肾上腺的协同正选择为心脏创造了进一步的选择压力,心脏在进化上与肺一起变得越来越复杂。从发育上看,心脏复杂性和大小的增加过早地影响肠道中胚层,从而诱导肝脏的发育。这种进化发育相互作用非常重要,因为肝脏为不断发展的生理系统提供调节葡萄糖和糖原的来源,这对于新皮层的进化是必要的。新皮层控制的进化进一步整合了生理系统。这种内在细胞间信号和外在因素的细胞-组织-器官-生理学的进化垂直整合是传统“自上而下”方法的逆转,通常认为生理系统是按照这种方法进行的。这种新的机械方法,结合了“自下而上”的细胞间信号成分,将为整合基因和表型提供一个现成的算法。本专题研讨会调查了这种垂直整合机制的系统发生起源,作为从海绵到人类的复杂生理特征的细胞间通讯基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/003b/2895351/ad5cf3a69e30/icp017f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验