Institute of Molecular Functional Materials and Department of Chemistry and Centre for Advanced Luminescence Materials, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China.
Acc Chem Res. 2010 Sep 21;43(9):1246-56. doi: 10.1021/ar1000378.
Energy remains one of the world's great challenges. Growing concerns about limited fossil fuel resources and the accumulation of CO(2) in the atmosphere from burning those fuels have stimulated tremendous academic and industrial interest. Researchers are focusing both on developing inexpensive renewable energy resources and on improving the technologies for energy conversion. Solar energy has the capacity to meet increasing global energy needs. Harvesting energy directly from sunlight using photovoltaic technology significantly reduces atmospheric emissions, avoiding the detrimental effects of these gases on the environment. Currently inorganic semiconductors dominate the solar cell production market, but these materials require high technology production and expensive materials, making electricity produced in this manner too costly to compete with conventional sources of electricity. Researchers have successfully fabricated efficient organic-based polymer solar cells (PSCs) as a lower cost alternative. Recently, metalated conjugated polymers have shown exceptional promise as donor materials in bulk-heterojunction solar cells and are emerging as viable alternatives to the all-organic congeners currently in use. Among these metalated conjugated polymers, soluble platinum(II)-containing poly(arylene ethynylene)s of variable bandgaps (∼1.4-3.0 eV) represent attractive candidates for a cost-effective, lightweight solar-energy conversion platform. This Account highlights and discusses the recent advances of this research frontier in organometallic photovoltaics. The emerging use of low-bandgap soluble platinum-acetylide polymers in PSCs offers a new and versatile strategy to capture sunlight for efficient solar power generation. Properties of these polyplatinynes--including their chemical structures, absorption coefficients, bandgaps, charge mobilities, accessibility of triplet excitons, molecular weights, and blend film morphologies--critically influence the device performance. Our group has developed a novel strategy that allows for tuning of the optical absorption and charge transport properties as well as the PSC efficiency of these metallopolyynes. The absorbance of these materials can also be tuned to traverse the near-visible and near-infrared spectral regions. Because of the diversity of transition metals available and chemical versatility of the central spacer unit, we anticipate that this class of materials could soon lead to exciting applications in next-generation PSCs and other electronic or photonic devices. Further research in this emerging field could spur new developments in the production of renewable energy.
能源仍然是世界面临的巨大挑战之一。人们对有限的化石燃料资源以及燃烧这些燃料导致大气中二氧化碳积累的日益担忧,激发了学术界和工业界的浓厚兴趣。研究人员既专注于开发廉价的可再生能源,也专注于提高能源转换技术。太阳能有能力满足不断增长的全球能源需求。利用光伏技术直接从阳光中获取能量,可大大减少大气排放,避免这些气体对环境造成的有害影响。目前,无机半导体在太阳能电池生产市场中占据主导地位,但这些材料需要高科技生产和昂贵的材料,使得以这种方式产生的电力过于昂贵,无法与传统电力来源竞争。研究人员已经成功制造出高效的有机聚合物太阳能电池(PSC)作为低成本替代品。最近,金属化共轭聚合物作为体异质结太阳能电池中的给体材料表现出了非凡的前景,并且正在成为目前使用的全有机同类物的可行替代品。在这些金属化共轭聚合物中,具有可变能带隙(约 1.4-3.0 eV)的可溶性含铂(II)聚(芳基乙炔)代表了用于具有成本效益、重量轻的太阳能转换平台的有吸引力的候选物。本综述重点介绍并讨论了该有机金属光伏领域的这一研究前沿的最新进展。在 PSCs 中使用低带隙可溶性铂炔聚合物为高效太阳能发电提供了一种新的、通用的捕获阳光的策略。这些聚多炔的性质——包括它们的化学结构、吸收系数、能带隙、电荷迁移率、三重态激子的可及性、分子量和共混膜形态——对器件性能有很大的影响。我们小组开发了一种新策略,可以调整这些金属聚合物的光学吸收和电荷输运性能以及 PSC 的效率。这些材料的吸收率也可以进行调整,以覆盖近可见和近红外光谱区域。由于可用的过渡金属的多样性以及中心间隔单元的化学多功能性,我们预计这一类材料很快将在下一代 PSCs 和其他电子或光子器件中得到应用。在这一新兴领域的进一步研究可能会刺激可再生能源生产的新发展。