Department of Electrical and Computer Engineering, College of Engineering, University of Iowa, Iowa City, Iowa, USA.
Department of Radiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.
Med Phys. 2024 Nov;51(11):8213-8231. doi: 10.1002/mp.17319. Epub 2024 Jul 23.
Forty to fifty percent of women and 13%-22% of men experience an osteoporosis-related fragility fracture in their lifetimes. After the age of 50 years, the risk of hip fracture doubles in every 10 years. x-Ray based DXA is currently clinically used to diagnose osteoporosis and predict fracture risk. However, it provides only 2-D representation of bone and is associated with other technical limitations. Thus, alternative methods are needed.
To develop and evaluate an ultra-low dose (ULD) hip CT-based automated method for assessment of volumetric bone mineral density (vBMD) at proximal femoral subregions.
An automated method was developed to segment the proximal femur in ULD hip CT images and delineate femoral subregions. The computational pipeline consists of deep learning (DL)-based computation of femur likelihood map followed by shape model-based femur segmentation and finite element analysis-based warping of a reference subregion labeling onto individual femur shapes. Finally, vBMD is computed over each subregion in the target image using a calibration phantom scan. A total of 100 participants (50 females) were recruited from the Genetic Epidemiology of COPD (COPDGene) study, and ULD hip CT imaging, equivalent to 18 days of background radiation received by U.S. residents, was performed on each participant. Additional hip CT imaging using a clinical protocol was performed on 12 participants and repeat ULD hip CT was acquired on another five participants. ULD CT images from 80 participants were used to train the DL network; ULD CT images of the remaining 20 participants as well as clinical and repeat ULD CT images were used to evaluate the accuracy, generalizability, and reproducibility of segmentation of femoral subregions. Finally, clinical CT and repeat ULD CT images were used to evaluate accuracy and reproducibility of ULD CT-based automated measurements of femoral vBMD.
Dice scores of accuracy (n = 20), reproducibility (n = 5), and generalizability (n = 12) of ULD CT-based automated subregion segmentation were 0.990, 0.982, and 0.977, respectively, for the femoral head and 0.941, 0.970, and 0.960, respectively, for the femoral neck. ULD CT-based regional vBMD showed Pearson and concordance correlation coefficients of 0.994 and 0.977, respectively, and a root-mean-square coefficient of variation (RMSCV) (%) of 1.39% with the clinical CT-derived reference measure. After 3-digit approximation, each of Pearson and concordance correlation coefficients as well as intraclass correlation coefficient (ICC) between baseline and repeat scans were 0.996 with RMSCV of 0.72%. Results of ULD CT-based bone analysis on 100 participants (age (mean ± SD) 73.6 ± 6.6 years) show that males have significantly greater (p < 0.01) vBMD at the femoral head and trochanteric regions than females, while females have moderately greater vBMD (p = 0.05) at the medial half of the femoral neck than males.
Deep learning, combined with shape model and finite element analysis, offers an accurate, reproducible, and generalizable algorithm for automated segmentation of the proximal femur and anatomic femoral subregions using ULD hip CT images. ULD CT-based regional measures of femoral vBMD are accurate and reproducible and demonstrate regional differences between males and females.
女性中有 40%到 50%,男性中有 13%-22%在一生中会经历一次与骨质疏松症相关的脆性骨折。50 岁以后,每 10 年髋关节骨折的风险就会增加一倍。目前临床上使用 X 射线双能 X 线吸收法(DXA)来诊断骨质疏松症和预测骨折风险。然而,它只能提供骨骼的 2D 表现,并且存在其他技术限制。因此,需要替代方法。
开发和评估一种基于超低剂量(ULD)髋关节 CT 的自动方法,用于评估股骨近端亚区的体积骨矿物质密度(vBMD)。
开发了一种自动方法,用于分割 ULD 髋关节 CT 图像中的股骨近端,并描绘股骨亚区。计算流程包括基于深度学习(DL)的股骨可能性图计算,然后是基于形状模型的股骨分割和基于有限元分析的参考亚区标签在个体股骨形状上的变形。最后,使用校准体模扫描计算每个目标图像中的 vBMD。从 COPD 基因(COPDGene)研究中招募了 100 名参与者(50 名女性),对每名参与者进行 ULD 髋关节 CT 成像,相当于美国居民接受的 18 天背景辐射。对 12 名参与者进行了额外的髋关节 CT 成像,并对另外 5 名参与者进行了重复 ULD 髋关节 CT 采集。使用 80 名参与者的 ULD CT 图像对 DL 网络进行训练;使用其余 20 名参与者的 ULD CT 图像以及临床和重复 ULD CT 图像来评估股骨亚区分割的准确性、泛化性和可重复性。最后,使用临床 CT 和重复 ULD CT 图像来评估基于 ULD CT 的股骨 vBMD 自动测量的准确性和可重复性。
在 20 名参与者的准确性(n=20)、可重复性(n=5)和泛化性(n=12)的 Dice 评分中,基于 ULD CT 的自动亚区分割的股骨头分别为 0.990、0.982 和 0.977,股骨颈分别为 0.941、0.970 和 0.960。ULD CT 基于区域的 vBMD 与临床 CT 参考测量值的 Pearson 和一致性相关系数分别为 0.994 和 0.977,根均方根变异系数(RMSCV)(%)为 1.39%。经过 3 位数字近似后,基线和重复扫描之间的 Pearson 和一致性相关系数以及组内相关系数(ICC)分别为 0.996,RMSCV 为 0.72%。对 100 名参与者(年龄(平均值±标准差)73.6±6.6 岁)的 ULD CT 骨分析结果表明,男性的股骨头和转子区域的 vBMD 明显大于女性(p<0.01),而女性的股骨颈内侧半区的 vBMD 略高于男性(p=0.05)。
深度学习结合形状模型和有限元分析,为使用 ULD 髋关节 CT 图像对股骨近端和解剖股骨亚区进行自动分割提供了一种准确、可重复和可推广的算法。ULD CT 基于区域的股骨 vBMD 测量具有准确性和可重复性,并显示了男性和女性之间的区域差异。