Suppr超能文献

遗传网络基元中噪声的生物学作用。

Biological role of noise encoded in a genetic network motif.

机构信息

Green Center for Systems Biology and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13300-5. doi: 10.1073/pnas.1003975107. Epub 2010 Jun 28.

Abstract

Genetic circuits that regulate distinct cellular processes can differ in their wiring pattern of interactions (architecture) and susceptibility to stochastic fluctuations (noise). Whether the link between circuit architecture and noise is of biological importance remains, however, poorly understood. To investigate this problem, we performed a computational study of gene expression noise for all possible circuit architectures of feed-forward loop (FFL) motifs. Results revealed that FFL architectures fall into two categories depending on whether their ON (stimulated) or OFF (unstimulated) steady states exhibit noise. To explore the biological importance of this difference in noise behavior, we analyzed 858 documented FFLs in Escherichia coli that were divided into 39 functional categories. The majority of FFLs were found to regulate two subsets of functional categories. Interestingly, these two functional categories associated with FFLs of opposite noise behaviors. This opposite noise preference revealed two noise-based strategies to cope with environmental constraints where cellular responses are either initiated or terminated stochastically to allow probabilistic sampling of alternative states. FFLs may thus be selected for their architecture-dependent noise behavior, revealing a biological role for noise that is encoded in gene circuit architectures.

摘要

调控不同细胞过程的遗传电路在相互作用的连接模式(架构)和对随机波动的敏感性(噪声)方面可能存在差异。然而,电路架构和噪声之间的联系是否具有生物学重要性,仍知之甚少。为了研究这个问题,我们对前馈环(FFL)基序的所有可能电路架构进行了基因表达噪声的计算研究。结果表明,FFL 架构分为两类,取决于其 ON(受刺激)或 OFF(未受刺激)稳态是否表现出噪声。为了探索这种噪声行为差异的生物学重要性,我们分析了大肠杆菌中 858 个有文献记载的 FFL,它们分为 39 个功能类别。大多数 FFL 被发现调节两个功能类别子集。有趣的是,这两个功能类别与具有相反噪声行为的 FFL 相关。这种相反的噪声偏好揭示了两种基于噪声的策略,以应对环境约束,其中细胞反应要么随机启动,要么终止,从而允许对替代状态进行概率采样。因此,FFL 可能因其架构依赖的噪声行为而被选择,从而揭示了噪声在基因电路架构中编码的生物学作用。

相似文献

1
Biological role of noise encoded in a genetic network motif.
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13300-5. doi: 10.1073/pnas.1003975107. Epub 2010 Jun 28.
2
Noise characteristics of feed forward loops.
Phys Biol. 2005 Mar;2(1):36-45. doi: 10.1088/1478-3967/2/1/005.
3
Multiple functions of a feed-forward-loop gene circuit.
J Mol Biol. 2005 Jun 10;349(3):501-14. doi: 10.1016/j.jmb.2005.04.022. Epub 2005 Apr 26.
4
Large-Scale Functional Analysis of CRP-Mediated Feed-Forward Loops.
Int J Mol Sci. 2018 Aug 9;19(8):2335. doi: 10.3390/ijms19082335.
5
Structure and function of the feed-forward loop network motif.
Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):11980-5. doi: 10.1073/pnas.2133841100. Epub 2003 Oct 6.
6
Bacteria determine fate by playing dice with controlled odds.
Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13197-8. doi: 10.1073/pnas.1008254107. Epub 2010 Jul 21.
7
Cell-Free Characterization of Coherent Feed-Forward Loop-Based Synthetic Genetic Circuits.
ACS Synth Biol. 2021 Jun 18;10(6):1406-1416. doi: 10.1021/acssynbio.1c00024. Epub 2021 Jun 1.
8
Environmental selection of the feed-forward loop circuit in gene-regulation networks.
Phys Biol. 2005 Jun;2(2):81-8. doi: 10.1088/1478-3975/2/2/001.
9
Gene network shaping of inherent noise spectra.
Nature. 2006 Feb 2;439(7076):608-11. doi: 10.1038/nature04194.
10
Extrinsic noise of the target gene governs abundance pattern of feed-forward loop motifs.
Phys Rev E. 2020 May;101(5-1):052411. doi: 10.1103/PhysRevE.101.052411.

引用本文的文献

1
Getting it right: suppression and leveraging of noise in robust decision-making.
Quant Plant Biol. 2024 Nov 27;5:e10. doi: 10.1017/qpb.2024.10. eCollection 2024.
3
Role of integrated noise in pathway-specific signal propagation in feed-forward loops.
Theory Biosci. 2021 Jun;140(2):139-155. doi: 10.1007/s12064-021-00338-6. Epub 2021 Mar 9.
4
Functional roles of microbial cell-to-cell heterogeneity and emerging technologies for analysis and control.
Curr Opin Microbiol. 2020 Oct;57:87-94. doi: 10.1016/j.mib.2020.08.002. Epub 2020 Sep 9.
5
Noise-driven cell differentiation and the emergence of spatiotemporal patterns.
PLoS One. 2020 Apr 24;15(4):e0232060. doi: 10.1371/journal.pone.0232060. eCollection 2020.
6
Sensitivities of Regulation Intensities in Feed-Forward Loops with Multistability.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:1969-1972. doi: 10.1109/EMBC.2019.8856532.
7
Identifying functions and prognostic biomarkers of network motifs marked by diverse chromatin states in human cell lines.
Oncogene. 2020 Jan;39(3):677-689. doi: 10.1038/s41388-019-1005-1. Epub 2019 Sep 19.
9
Perspective: Engineering noise in biological systems towards predictive stochastic design.
APL Bioeng. 2018 May 7;2(2):020901. doi: 10.1063/1.5025033. eCollection 2018 Jun.
10
The Reaction of Dimerization by Itself Reduces the Noise Intensity of the Protein Monomer.
Sci Rep. 2019 Mar 4;9(1):3405. doi: 10.1038/s41598-019-39611-6.

本文引用的文献

1
Architecture-dependent noise discriminates functionally analogous differentiation circuits.
Cell. 2009 Oct 30;139(3):512-22. doi: 10.1016/j.cell.2009.07.046. Epub 2009 Oct 22.
2
Transcriptional regulatory circuits: predicting numbers from alphabets.
Science. 2009 Jul 24;325(5939):429-32. doi: 10.1126/science.1171347.
3
Kinetics of genetic switching into the state of bacterial competence.
Biophys J. 2009 Feb;96(3):1178-88. doi: 10.1016/j.bpj.2008.10.034.
4
Quantitative transcription factor binding kinetics at the single-molecule level.
Biophys J. 2009 Jan;96(2):609-20. doi: 10.1016/j.bpj.2008.09.040.
5
A simple screen to identify promoters conferring high levels of phenotypic noise.
PLoS Genet. 2008 Dec;4(12):e1000307. doi: 10.1371/journal.pgen.1000307. Epub 2008 Dec 19.
6
Regulatory activity revealed by dynamic correlations in gene expression noise.
Nat Genet. 2008 Dec;40(12):1493-8. doi: 10.1038/ng.281.
7
EcoCyc: a comprehensive view of Escherichia coli biology.
Nucleic Acids Res. 2009 Jan;37(Database issue):D464-70. doi: 10.1093/nar/gkn751. Epub 2008 Oct 30.
8
A fast, robust and tunable synthetic gene oscillator.
Nature. 2008 Nov 27;456(7221):516-9. doi: 10.1038/nature07389. Epub 2008 Oct 29.
9
Stochastic switching to competence.
Curr Opin Microbiol. 2008 Dec;11(6):553-9. doi: 10.1016/j.mib.2008.09.020. Epub 2008 Nov 7.
10
A stochastic single-molecule event triggers phenotype switching of a bacterial cell.
Science. 2008 Oct 17;322(5900):442-6. doi: 10.1126/science.1161427.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验