Department of Veterinary Sciences, Federal University of Paraíba, Areia, PB, Brazil, 58397-000.
Laboratory of Pharmaceutical Technology, Federal University of Paraíba, João Pessoa, PB, Brazil, 58.051-970.
Brain Res. 2010 Sep 10;1351:141-149. doi: 10.1016/j.brainres.2010.07.001. Epub 2010 Jul 24.
Peripheral chemoreflex activation has been considered the key drive for the overactivity of the sympathetic nervous system observed in some pathological conditions such as sleep obstructive apnea. In addition, increases in angiotensin-II-derived reactive oxygen species found in some autonomic regulatory brain areas have been implicated in hypertension. However, a link between oxidative stress and peripheral chemoreflex integration within the RVLM has never been investigated. Here, we tested the hypothesis that the pressor response induced by peripheral chemoreflex activation involves the angiotensin-II/AT(1)R/superoxide pathway within the rostral ventrolateral medulla (RVLM). Seventeen male Wistar rats (260-300 g) were implanted with bilateral guide cannulae towards the RVLM and were fitted with catheters for blood pressure recordings and drug administration. Peripheral chemoreflex activation with potassium cyanide (80 microg/kg, i.v.) produced a transient increase in blood pressure, which was attenuated 2 minutes after bilateral microinjection of losartan (1 nmol), an AT(1) receptor antagonist, in the RVLM (+54+/-4 vs +19+/-3 Delta mmHg, P<0.05, n=6). Moreover, superoxide scavenging in the RVLM using a superoxide dismutase (SOD) mimetic, Tempol (5 nmol), significantly blunted the pressor response to peripheral chemoreflex activation (+50+/-3 vs +18+/-3 Delta mmHg, P<0.05, n=7). On the other hand, bilateral microinjection of saline (n=4) in the RVLM produced no change in the pressor response to chemoreflex activation. Taken together, these data suggest that the neurotransmission of the peripheral chemoreflex within the RVLM involves, at least in part, the activation of AT(1) receptors and downstream superoxide formation.
外周化学感受器激活被认为是某些病理情况下交感神经系统过度活跃的关键驱动因素,如睡眠呼吸暂停。此外,一些自主调节脑区中血管紧张素-II 衍生的活性氧物种的增加与高血压有关。然而,氧化应激与 RVLM 中外周化学感受器整合之间的联系从未被研究过。在这里,我们测试了这样一个假设,即外周化学感受器激活引起的升压反应涉及 RVLM 内的血管紧张素-II/AT(1)R/超氧化物途径。17 只雄性 Wistar 大鼠(260-300g)植入双侧 RVLM 导向的引导套管,并配备用于血压记录和药物给药的导管。静脉注射氰化钾(80μg/kg)激活外周化学感受器,引起血压短暂升高,2 分钟后 RVLM 双侧微注射氯沙坦(1nmol),一种 AT(1)受体拮抗剂,可使血压升高反应减弱(+54+/-4 与+19+/-3 Delta mmHg,P<0.05,n=6)。此外,在 RVLM 中使用超氧化物歧化酶(SOD)类似物 Tempol(5nmol)清除超氧化物,可显著减弱对外周化学感受器激活的升压反应(+50+/-3 与+18+/-3 Delta mmHg,P<0.05,n=7)。另一方面,RVLM 双侧微注射生理盐水(n=4)对化学感受器激活引起的升压反应没有影响。综上所述,这些数据表明,RVLM 内外周化学感受器的神经传递至少部分涉及 AT(1)受体的激活和下游超氧化物的形成。